Suppr超能文献

利用多模态神经网络预测自发性脑出血的血肿扩大。

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network.

机构信息

Charité Lab for Artificial Intelligence in Medicine, Charité Universitätsmedizin Berlin, Charitéplatz 1, 101117, Berlin, Germany.

Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 5148507, Japan.

出版信息

Sci Rep. 2024 Jul 16;14(1):16465. doi: 10.1038/s41598-024-67365-3.

Abstract

Hematoma expansion occasionally occurs in patients with intracerebral hemorrhage (ICH), associating with poor outcome. Multimodal neural networks incorporating convolutional neural network (CNN) analysis of images and neural network analysis of tabular data are known to show promising results in prediction and classification tasks. We aimed to develop a reliable multimodal neural network model that comprehensively analyzes CT images and clinical variables to predict hematoma expansion. We retrospectively enrolled ICH patients at four hospitals between 2017 and 2021, assigning patients from three hospitals to the training and validation dataset and patients from one hospital to the test dataset. Admission CT images and clinical variables were collected. CT findings were evaluated by experts. Three types of models were developed and trained: (1) a CNN model analyzing CT images, (2) a multimodal CNN model analyzing CT images and clinical variables, and (3) a non-CNN model analyzing CT findings and clinical variables with machine learning. The models were evaluated on the test dataset, focusing first on sensitivity and second on area under the receiver operating curve (AUC). Two hundred seventy-three patients (median age, 71 years [59-79]; 159 men) in the training and validation dataset and 106 patients (median age, 70 years [62-82]; 63 men) in the test dataset were included. Sensitivity and AUC of a CNN model were 1.000 (95% confidence interval [CI] 0.768-1.000) and 0.755 (95% CI 0.704-0.807); those of a multimodal CNN model were 1.000 (95% CI 0.768-1.000) and 0.799 (95% CI 0.749-0.849); and those of a non-CNN model were 0.857 (95% CI 0.572-0.982) and 0.733 (95% CI 0.625-0.840). We developed a multimodal neural network model incorporating CNN analysis of CT images and neural network analysis of clinical variables to predict hematoma expansion in ICH. The model was externally validated and showed the best performance of all the models.

摘要

血肿扩大偶尔发生在颅内出血(ICH)患者中,与不良预后有关。已经知道,包含卷积神经网络(CNN)分析图像和神经网络分析表格数据的多模态神经网络在预测和分类任务中显示出有前景的结果。我们旨在开发一种可靠的多模态神经网络模型,该模型可以全面分析 CT 图像和临床变量以预测血肿扩大。我们回顾性地纳入了 2017 年至 2021 年间四家医院的 ICH 患者,将来自三家医院的患者分配到训练和验证数据集,将来自一家医院的患者分配到测试数据集。收集入院 CT 图像和临床变量。由专家评估 CT 发现。开发并训练了三种类型的模型:(1)分析 CT 图像的 CNN 模型,(2)分析 CT 图像和临床变量的多模态 CNN 模型,以及(3)使用机器学习分析 CT 表现和临床变量的非 CNN 模型。在测试数据集上评估了模型,首先关注灵敏度,其次关注接收器工作特征曲线下的面积(AUC)。训练和验证数据集包含 273 名患者(中位数年龄 71 岁[59-79];159 名男性)和 106 名患者(中位数年龄 70 岁[62-82];63 名男性))。CNN 模型的灵敏度和 AUC 分别为 1.000(95%置信区间[CI]0.768-1.000)和 0.755(95%CI0.704-0.807);多模态 CNN 模型的灵敏度和 AUC 分别为 1.000(95%CI0.768-1.000)和 0.799(95%CI0.749-0.849);非 CNN 模型的灵敏度和 AUC 分别为 0.857(95%CI0.572-0.982)和 0.733(95%CI0.625-0.840)。我们开发了一种多模态神经网络模型,该模型包含 CT 图像的 CNN 分析和临床变量的神经网络分析,以预测 ICH 中的血肿扩大。该模型经过外部验证,显示出所有模型中最好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/231f/11252350/3ef85d02631a/41598_2024_67365_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验