van Beek Carlijn L F, Feringa Ben L
Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands.
J Am Chem Soc. 2024 Feb 28;146(8):5634-5642. doi: 10.1021/jacs.3c14430. Epub 2024 Feb 13.
Biological molecular machines play a pivotal role in sustaining life by producing a controlled and directional motion. Artificial molecular machines aim to mimic this motion, to exploit and tune the nanoscale produced motion to power dynamic molecular systems. The precise control, transfer, and amplification of the molecular-level motion is crucial to harness the potential of synthetic molecular motors. It is intriguing to establish how directional motor rotation can be utilized to drive secondary motions in other subunits of a multicomponent molecular machine. The challenge to design sophisticated synthetic machines involving multiple motorized elements presents fascinating opportunities for achieving unprecedented functions, but these remain almost unexplored due to their extremely intricate behavior. Here we show intrinsic coupled rotary motion in light-driven overcrowded-alkene based molecular motors. Thus far, molecular motors with two rotors have been understood to undergo independent rotation of each subunit. The new bridged-isoindigo motor design revealed an additional dimension to the motor's unidirectional operation mechanism where communication between the rotors occurs. An unprecedented double metastable state intermediate bridges the rotation cycles of the two rotor subunits. Our findings demonstrate how neighboring motorized subunits can affect each other and thereby drastically change the motor's functioning. Controlling the embedded entanglement of active intramolecular components sets the stage for more advanced artificial molecular machines.
生物分子机器通过产生可控的定向运动在维持生命过程中发挥着关键作用。人工分子机器旨在模仿这种运动,利用并调节纳米级产生的运动来为动态分子系统提供动力。分子水平运动的精确控制、传递和放大对于发挥合成分子马达的潜力至关重要。探究如何利用定向马达旋转来驱动多组分分子机器其他亚基中的次级运动很有趣。设计涉及多个驱动元件的复杂合成机器面临的挑战为实现前所未有的功能带来了迷人的机遇,但由于其极其复杂的行为,这些机遇几乎尚未得到探索。在此,我们展示了基于光驱动的过度拥挤烯烃的分子马达中的固有耦合旋转运动。迄今为止,具有两个转子的分子马达被认为每个亚基会独立旋转。新的桥连异靛蓝马达设计揭示了马达单向运行机制的一个新维度,即转子之间会发生通信。一种前所未有的双亚稳态中间体连接了两个转子亚基的旋转周期。我们的研究结果表明相邻的驱动亚基如何相互影响,从而极大地改变马达的功能。控制活性分子内组分的内在缠结为更先进的人工分子机器奠定了基础。