Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
Lab Chip. 2022 May 17;22(10):1962-1970. doi: 10.1039/d2lc00203e.
We present a new cell culture technology for large-scale mechanobiology studies capable of generating and applying optically controlled uniform compression on single cells in 3D. Mesenchymal stem cells (MSCs) are individually encapsulated inside an optically triggered nanoactuator-alginate hybrid biomaterial using microfluidics, and the encapsulating network isotropically compresses the cell upon activation by light. The favorable biomolecular properties of alginate allow cell culture up to a week. The mechanically active microgels are capable of generating up to 15% compressive strain and forces reaching 400 nN. As a proof of concept, we demonstrate the use of the mechanically active cell culture system in mechanobiology by subjecting singly encapsulated MSCs to optically generated isotropic compression and monitoring changes in intracellular calcium intensity.
我们提出了一种新的细胞培养技术,可用于大规模的机械生物学研究,能够在 3D 中对单个细胞产生和施加光学控制的均匀压缩。使用微流控技术,将间充质干细胞 (MSCs) 单独封装在光触发的纳米致动器-海藻酸钠混合生物材料中,并且当用光激活时,封装网络各向同性地压缩细胞。海藻酸钠的有利生物分子特性允许细胞培养长达一周。机械活性微凝胶能够产生高达 15%的压缩应变和 400 nN 的力。作为概念验证,我们通过将单独封装的 MSC 暴露于光产生的各向同性压缩并监测细胞内钙强度的变化,展示了机械活性细胞培养系统在机械生物学中的应用。