Suppr超能文献

由噪声驱动的阻尼谐振子描述的γ动力学中的自发性波动。

Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise.

机构信息

Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt, Germany.

International Max Planck Research School for Neural Circuits, Frankfurt Am Main, Germany.

出版信息

Nat Commun. 2022 Apr 19;13(1):2019. doi: 10.1038/s41467-022-29674-x.

Abstract

Circuits of excitatory and inhibitory neurons generate gamma-rhythmic activity (30-80 Hz). Gamma-cycles show spontaneous variability in amplitude and duration. To investigate the mechanisms underlying this variability, we recorded local-field-potentials (LFPs) and spikes from awake macaque V1. We developed a noise-robust method to detect gamma-cycle amplitudes and durations, which showed a weak but positive correlation. This correlation, and the joint amplitude-duration distribution, is well reproduced by a noise-driven damped harmonic oscillator. This model accurately fits LFP power-spectra, is equivalent to a linear, noise-driven E-I circuit, and recapitulates two additional features of gamma: (1) Amplitude-duration correlations decrease with oscillation strength; (2) amplitudes and durations exhibit strong and weak autocorrelations, respectively, depending on oscillation strength. Finally, longer gamma-cycles are associated with stronger spike-synchrony, but lower spike-rates in both (putative) excitatory and inhibitory neurons. In sum, V1 gamma-dynamics are well described by the simplest possible model of gamma: A damped harmonic oscillator driven by noise.

摘要

兴奋性和抑制性神经元回路产生γ节律性活动(30-80Hz)。γ-环在幅度和持续时间上表现出自发的可变性。为了研究这种可变性的机制,我们在清醒的猕猴 V1 中记录了局部场电位(LFPs)和尖峰。我们开发了一种抗噪的方法来检测 γ-环的幅度和持续时间,发现它们之间存在微弱但呈正相关。这种相关性,以及联合的幅度-持续时间分布,可以很好地由噪声驱动的阻尼谐波振荡器再现。该模型准确地拟合了 LFP 功率谱,等效于线性、噪声驱动的 E-I 电路,并再现了 γ 的另外两个特征:(1)幅度-持续时间相关性随振荡强度的增加而降低;(2)幅度和持续时间分别表现出强和弱的自相关,这取决于振荡强度。最后,较长的 γ-环与较强的尖峰同步性相关,但在(推测的)兴奋性和抑制性神经元中尖峰率较低。总之,V1 的γ 动力学可以用最简单的 γ 模型很好地描述:由噪声驱动的阻尼谐波振荡器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c63/9018758/e780302080be/41467_2022_29674_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验