Barbieri Francesca, Mazzoni Alberto, Logothetis Nikos K, Panzeri Stefano, Brunel Nicolas
Institute for Scientific Interchange, 10133, Torino, Italy, Unit of Neuroscience Information and Complexity, Centre National de la Recherche Scientifique Unité Propre de Recherche-3293, 91198 Gif-sur-Yvette, France,
Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy.
J Neurosci. 2014 Oct 29;34(44):14589-605. doi: 10.1523/JNEUROSCI.5365-13.2014.
The local field potential (LFP) captures different neural processes, including integrative synaptic dynamics that cannot be observed by measuring only the spiking activity of small populations. Therefore, investigating how LFP power is modulated by external stimuli can offer important insights into sensory neural representations. However, gaining such insight requires developing data-driven computational models that can identify and disambiguate the neural contributions to the LFP. Here, we investigated how networks of excitatory and inhibitory integrate-and-fire neurons responding to time-dependent inputs can be used to interpret sensory modulations of LFP spectra. We computed analytically from such models the LFP spectra and the information that they convey about input and used these analytical expressions to fit the model to LFPs recorded in V1 of anesthetized macaques (Macaca mulatta) during the presentation of color movies. Our expressions explain 60%-98% of the variance of the LFP spectrum shape and its dependency upon movie scenes and we achieved this with realistic values for the best-fit parameters. In particular, synaptic best-fit parameters were compatible with experimental measurements and the predictions of firing rates, based only on the fit of LFP data, correlated with the multiunit spike rate recorded from the same location. Moreover, the parameters characterizing the input to the network across different movie scenes correlated with cross-scene changes of several image features. Our findings suggest that analytical descriptions of spiking neuron networks may become a crucial tool for the interpretation of field recordings.
局部场电位(LFP)捕捉不同的神经过程,包括整合性突触动力学,而这种动力学仅通过测量小群体的发放活动是无法观察到的。因此,研究外部刺激如何调节LFP功率能够为感觉神经表征提供重要见解。然而,要获得这样的见解需要开发数据驱动的计算模型,该模型能够识别并区分对LFP的神经贡献。在这里,我们研究了兴奋性和抑制性整合发放神经元网络对随时间变化的输入做出反应时,如何用于解释LFP频谱的感觉调制。我们从这些模型中解析计算出LFP频谱以及它们传达的关于输入的信息,并使用这些解析表达式将模型拟合到在呈现彩色电影期间麻醉猕猴(恒河猴)初级视皮层(V1)记录的LFP。我们的表达式解释了LFP频谱形状变化的60%-98%及其对电影场景的依赖性,并且我们通过最佳拟合参数的现实值实现了这一点。特别是,突触最佳拟合参数与实验测量值兼容,并且仅基于LFP数据的拟合得出的发放率预测与从同一位置记录的多单位发放率相关。此外,表征网络在不同电影场景下输入的参数与几个图像特征的跨场景变化相关。我们的研究结果表明,发放神经元网络的解析描述可能成为解释场记录的关键工具。