Suppr超能文献

用于高选择性CO电还原的活性层与导电层堆叠超晶格

Active and conductive layer stacked superlattices for highly selective CO electroreduction.

作者信息

Duan Junyuan, Liu Tianyang, Zhao Yinghe, Yang Ruoou, Zhao Yang, Wang Wenbin, Liu Youwen, Li Huiqiao, Li Yafei, Zhai Tianyou

机构信息

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, P. R. China.

Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, Jiangsu, P. R. China.

出版信息

Nat Commun. 2022 Apr 19;13(1):2039. doi: 10.1038/s41467-022-29699-2.

Abstract

Metal oxides are archetypal CO reduction reaction electrocatalysts, yet inevitable self-reduction will enhance competitive hydrogen evolution and lower the CO electroreduction selectivity. Herein, we propose a tangible superlattice model of alternating metal oxides and selenide sublayers in which electrons are rapidly exported through the conductive metal selenide layer to protect the active oxide layer from self-reduction. Taking BiCuSeO superlattices as a proof-of-concept, a comprehensive characterization reveals that the active [BiO] sublayers retain oxidation states rather than their self-reduced Bi metal during CO electroreduction because of the rapid electron transfer through the conductive [CuSe] sublayer. Theoretical calculations uncover the high activity over [BiO] sublayers due to the overlaps between the Bi p orbitals and O p orbitals in the OCHO* intermediate, thus achieving over 90% formate selectivity in a wide potential range from -0.4 to -1.1 V. This work broadens the studying and improving of the CO electroreduction properties of metal oxide systems.

摘要

金属氧化物是典型的一氧化碳还原反应电催化剂,但不可避免的自还原会增强竞争性析氢并降低一氧化碳电还原选择性。在此,我们提出了一种由交替的金属氧化物和硒化物子层构成的切实可行的超晶格模型,其中电子通过导电的金属硒化物层快速导出,以保护活性氧化物层不发生自还原。以BiCuSeO超晶格作为概念验证,全面表征表明,在一氧化碳电还原过程中,活性[BiO]子层保持氧化态,而非其自还原的铋金属,这是因为电子通过导电的[CuSe]子层快速转移。理论计算揭示了由于OCHO*中间体中铋p轨道和氧p轨道的重叠,[BiO]子层具有高活性,从而在-0.4至-1.1 V的宽电位范围内实现了超过90%的甲酸盐选择性。这项工作拓宽了对金属氧化物体系一氧化碳电还原性能的研究和改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f010/9018841/ab2397709825/41467_2022_29699_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验