Zuo Fengkai, Zhang Hao, Ding Yu, Liu Yongshuai, Li Yuhao, Liu Hengjun, Gu Fangchao, Li Qiang, Wang Yaqun, Zhu Yue, Li Hongsen, Yu Guihua
College of Physics, Qingdao University, Qingdao 266071, China.
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2314362120. doi: 10.1073/pnas.2314362120. Epub 2023 Nov 20.
Interfacial catalysis occurs ubiquitously in electrochemical systems, such as batteries, fuel cells, and photocatalytic devices. Frequently, in such a system, the electrode material evolves dynamically at different operating voltages, and this electrochemically driven transformation usually dictates the catalytic reactivity of the material and ultimately the electrochemical performance of the device. Despite the importance of the process, comprehension of the underlying structural and compositional evolutions of the electrode material with direct visualization and quantification is still a significant challenge. In this work, we demonstrate a protocol for studying the dynamic evolution of the electrode material under electrochemical processes by integrating microscopic and spectroscopic analyses, operando magnetometry techniques, and density functional theory calculations. The presented methodology provides a real-time picture of the chemical, physical, and electronic structures of the material and its link to the electrochemical performance. Using Co(OH) as a prototype battery electrode and by monitoring the Co metal center under different applied voltages, we show that before a well-known catalytic reaction proceeds, an interfacial storage process occurs at the metallic Co nanoparticles/LiOH interface due to injection of spin-polarized electrons. Subsequently, the metallic Co nanoparticles act as catalytic activation centers and promote LiOH decomposition by transferring these interfacially residing electrons. Most intriguingly, at the LiOH decomposition potential, electronic structure of the metallic Co nanoparticles involving spin-polarized electrons transfer has been shown to exhibit a dynamic variation. This work illustrates a viable approach to access key information inside interfacial catalytic processes and provides useful insights in controlling complex interfaces for wide-ranging electrochemical systems.
界面催化在电化学系统中普遍存在,如电池、燃料电池和光催化装置。通常,在这样的系统中,电极材料在不同的工作电压下会动态演变,这种电化学驱动的转变通常决定了材料的催化反应活性,并最终决定了装置的电化学性能。尽管该过程很重要,但通过直接可视化和量化来理解电极材料潜在的结构和成分演变仍然是一项重大挑战。在这项工作中,我们展示了一种通过整合微观和光谱分析、原位磁强计技术以及密度泛函理论计算来研究电化学过程中电极材料动态演变的方案。所提出的方法提供了材料的化学、物理和电子结构及其与电化学性能之间联系的实时图像。以Co(OH)作为原型电池电极,并通过监测不同施加电压下的Co金属中心,我们表明在一个著名的催化反应进行之前,由于自旋极化电子的注入,在金属Co纳米颗粒/LiOH界面会发生界面存储过程。随后,金属Co纳米颗粒作为催化活化中心,通过转移这些界面处存在的电子来促进LiOH分解。最有趣的是,在LiOH分解电位下,已表明涉及自旋极化电子转移的金属Co纳米颗粒的电子结构呈现出动态变化。这项工作说明了一种获取界面催化过程关键信息的可行方法,并为控制广泛的电化学系统中的复杂界面提供了有用的见解。