Suppr超能文献

钴基电池电极中涉及自旋极化电子转移的电化学界面催化。

Electrochemical interfacial catalysis in Co-based battery electrodes involving spin-polarized electron transfer.

作者信息

Zuo Fengkai, Zhang Hao, Ding Yu, Liu Yongshuai, Li Yuhao, Liu Hengjun, Gu Fangchao, Li Qiang, Wang Yaqun, Zhu Yue, Li Hongsen, Yu Guihua

机构信息

College of Physics, Qingdao University, Qingdao 266071, China.

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2314362120. doi: 10.1073/pnas.2314362120. Epub 2023 Nov 20.

Abstract

Interfacial catalysis occurs ubiquitously in electrochemical systems, such as batteries, fuel cells, and photocatalytic devices. Frequently, in such a system, the electrode material evolves dynamically at different operating voltages, and this electrochemically driven transformation usually dictates the catalytic reactivity of the material and ultimately the electrochemical performance of the device. Despite the importance of the process, comprehension of the underlying structural and compositional evolutions of the electrode material with direct visualization and quantification is still a significant challenge. In this work, we demonstrate a protocol for studying the dynamic evolution of the electrode material under electrochemical processes by integrating microscopic and spectroscopic analyses, operando magnetometry techniques, and density functional theory calculations. The presented methodology provides a real-time picture of the chemical, physical, and electronic structures of the material and its link to the electrochemical performance. Using Co(OH) as a prototype battery electrode and by monitoring the Co metal center under different applied voltages, we show that before a well-known catalytic reaction proceeds, an interfacial storage process occurs at the metallic Co nanoparticles/LiOH interface due to injection of spin-polarized electrons. Subsequently, the metallic Co nanoparticles act as catalytic activation centers and promote LiOH decomposition by transferring these interfacially residing electrons. Most intriguingly, at the LiOH decomposition potential, electronic structure of the metallic Co nanoparticles involving spin-polarized electrons transfer has been shown to exhibit a dynamic variation. This work illustrates a viable approach to access key information inside interfacial catalytic processes and provides useful insights in controlling complex interfaces for wide-ranging electrochemical systems.

摘要

界面催化在电化学系统中普遍存在,如电池、燃料电池和光催化装置。通常,在这样的系统中,电极材料在不同的工作电压下会动态演变,这种电化学驱动的转变通常决定了材料的催化反应活性,并最终决定了装置的电化学性能。尽管该过程很重要,但通过直接可视化和量化来理解电极材料潜在的结构和成分演变仍然是一项重大挑战。在这项工作中,我们展示了一种通过整合微观和光谱分析、原位磁强计技术以及密度泛函理论计算来研究电化学过程中电极材料动态演变的方案。所提出的方法提供了材料的化学、物理和电子结构及其与电化学性能之间联系的实时图像。以Co(OH)作为原型电池电极,并通过监测不同施加电压下的Co金属中心,我们表明在一个著名的催化反应进行之前,由于自旋极化电子的注入,在金属Co纳米颗粒/LiOH界面会发生界面存储过程。随后,金属Co纳米颗粒作为催化活化中心,通过转移这些界面处存在的电子来促进LiOH分解。最有趣的是,在LiOH分解电位下,已表明涉及自旋极化电子转移的金属Co纳米颗粒的电子结构呈现出动态变化。这项工作说明了一种获取界面催化过程关键信息的可行方法,并为控制广泛的电化学系统中的复杂界面提供了有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e35f/10691230/5c3d886943ca/pnas.2314362120fig01.jpg

相似文献

1
Electrochemical interfacial catalysis in Co-based battery electrodes involving spin-polarized electron transfer.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2314362120. doi: 10.1073/pnas.2314362120. Epub 2023 Nov 20.
2
Real-time tracking of electron transfer at catalytically active interfaces in lithium-ion batteries.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2320030121. doi: 10.1073/pnas.2320030121. Epub 2024 Feb 5.
3
Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium-Ion Batteries.
Adv Mater. 2021 Mar;33(12):e2006629. doi: 10.1002/adma.202006629. Epub 2021 Feb 12.
4
Revealing the effect of LiOH on forming a SEI using a Co magnetic "probe".
Chem Sci. 2023 Oct 12;14(43):12219-12230. doi: 10.1039/d3sc04377k. eCollection 2023 Nov 8.
5
Additional Lithium Storage on Dynamic Electrode Surface by Charge Redistribution in Inactive Ru Metal.
Small. 2020 Jan;16(1):e1905868. doi: 10.1002/smll.201905868. Epub 2019 Dec 1.
6
Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
Acc Chem Res. 2017 Apr 18;50(4):787-795. doi: 10.1021/acs.accounts.6b00596. Epub 2017 Feb 16.
7
Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
Acc Chem Res. 2021 Aug 3;54(15):3003-3015. doi: 10.1021/acs.accounts.1c00172. Epub 2021 May 15.
8
Electrochemical Thin Layers in Nanostructures for Energy Storage.
Acc Chem Res. 2016 Oct 18;49(10):2336-2346. doi: 10.1021/acs.accounts.6b00315. Epub 2016 Sep 16.
9
Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
Acc Chem Res. 2017 Nov 21;50(11):2653-2660. doi: 10.1021/acs.accounts.7b00460. Epub 2017 Nov 7.
10
Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies.
Acc Chem Res. 2022 Jul 19;55(14):1949-1959. doi: 10.1021/acs.accounts.2c00239. Epub 2022 Jul 8.

引用本文的文献

3
Real-time tracking of electron transfer at catalytically active interfaces in lithium-ion batteries.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2320030121. doi: 10.1073/pnas.2320030121. Epub 2024 Feb 5.

本文引用的文献

1
Extra capacity beyond electrochemistry: electrons storage by spin-polarization.
Sci Bull (Beijing). 2020 Dec 30;65(24):2038-2039. doi: 10.1016/j.scib.2020.09.005. Epub 2020 Sep 5.
2
Understanding the Predominant Potassium-Ion Intercalation Mechanism of Single-Phased Bimetal Oxides by Magnetometry.
Nano Lett. 2022 Dec 28;22(24):10102-10110. doi: 10.1021/acs.nanolett.2c03849. Epub 2022 Dec 7.
3
Active and conductive layer stacked superlattices for highly selective CO electroreduction.
Nat Commun. 2022 Apr 19;13(1):2039. doi: 10.1038/s41467-022-29699-2.
4
Enhanced localized dipole of Pt-Au single-site catalyst for solar water splitting.
Proc Natl Acad Sci U S A. 2022 Feb 22;119(8). doi: 10.1073/pnas.2119723119.
6
Phase Coexistence and Structural Dynamics of Redox Metal Catalysts Revealed by Operando TEM.
Adv Mater. 2021 Aug;33(31):e2101772. doi: 10.1002/adma.202101772. Epub 2021 Jun 12.
7
Correlative operando microscopy of oxygen evolution electrocatalysts.
Nature. 2021 May;593(7857):67-73. doi: 10.1038/s41586-021-03454-x. Epub 2021 May 5.
8
Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium-Ion Batteries.
Adv Mater. 2021 Mar;33(12):e2006629. doi: 10.1002/adma.202006629. Epub 2021 Feb 12.
9
In situ manipulation of the active Au-TiO interface with atomic precision during CO oxidation.
Science. 2021 Jan 29;371(6528):517-521. doi: 10.1126/science.abe3558.
10
The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries.
Angew Chem Int Ed Engl. 2021 Mar 29;60(14):7770-7776. doi: 10.1002/anie.202013812. Epub 2021 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验