Suppr超能文献

性别检测工具在预测中文名字的性别方面有多准确?一项针对 20000 个拼音形式的名字的研究。

How accurate are gender detection tools in predicting the gender for Chinese names? A study with 20,000 given names in Pinyin format.

出版信息

J Med Libr Assoc. 2022 Apr 1;110(2):205-211. doi: 10.5195/jmla.2022.1289.

Abstract

OBJECTIVE

We recently showed that the gender detection tools NamSor, Gender API, and Wiki-Gendersort accurately predicted the gender of individuals with Western given names. Here, we aimed to evaluate the performance of these tools with Chinese given names in Pinyin format.

METHODS

We constructed two datasets for the purpose of the study. File #1 was created by randomly drawing 20,000 names from a gender-labeled database of 52,414 Chinese given names in Pinyin format. File #2, which contained 9,077 names, was created by removing from File #1 all unisex names that we were able to identify (i.e., those that were listed in the database as both male and female names). We recorded for both files the number of correct classifications (correct gender assigned to a name), misclassifications (wrong gender assigned to a name), and nonclassifications (no gender assigned). We then calculated the proportion of misclassifications and nonclassifications (errorCoded).

RESULTS

For File #1, errorCoded was 53% for NamSor, 65% for Gender API, and 90% for Wiki-Gendersort. For File #2, errorCoded was 43% for NamSor, 66% for Gender API, and 94% for Wiki-Gendersort.

CONCLUSION

We found that all three gender detection tools inaccurately predicted the gender of individuals with Chinese given names in Pinyin format and therefore should not be used in this population.

摘要

目的

我们最近发现 NamSor、Gender API 和 Wiki-Gendersort 等性别检测工具可以准确预测具有西方名字的个体的性别。在这里,我们旨在评估这些工具在中文拼音名字中的性能。

方法

我们构建了两个数据集用于本研究。文件 #1 通过从 52414 个中文拼音名字的性别标记数据库中随机抽取 20000 个名字创建。文件 #2 包含 9077 个名字,是通过从文件 #1 中删除我们能够识别的所有中性名字(即那些在数据库中被列为男女名字的名字)创建的。我们为两个文件记录了正确分类的数量(正确分配给名字的性别)、错误分类的数量(错误分配给名字的性别)和未分类的数量(未分配性别)。然后,我们计算了错误分类和未分类的比例(错误编码)。

结果

对于文件 #1,NamSor 的错误编码为 53%,Gender API 的错误编码为 65%,Wiki-Gendersort 的错误编码为 90%。对于文件 #2,NamSor 的错误编码为 43%,Gender API 的错误编码为 66%,Wiki-Gendersort 的错误编码为 94%。

结论

我们发现所有三种性别检测工具都不准确地预测了具有中文拼音名字的个体的性别,因此不应该在这个人群中使用。

相似文献

7
Are Accuracy Parameters Useful for Improving the Performance of Gender Detection Tools? A Comparative Study with Western and Chinese Names.
J Gen Intern Med. 2022 Nov;37(15):4024-4027. doi: 10.1007/s11606-022-07469-6. Epub 2022 Mar 15.

引用本文的文献

7
A gender perspective on the global migration of scholars.从性别视角看全球学者迁移。
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2214664120. doi: 10.1073/pnas.2214664120. Epub 2023 Feb 27.

本文引用的文献

3
Comparison and benchmark of name-to-gender inference services.姓名到性别的推理服务的比较与基准测试
PeerJ Comput Sci. 2018 Jul 16;4:e156. doi: 10.7717/peerj-cs.156. eCollection 2018.
4
Women Physicians and Promotion in Academic Medicine.女医师与学术医学的晋升
N Engl J Med. 2020 Nov 26;383(22):2148-2157. doi: 10.1056/NEJMsa1916935.
5
Sex Distribution of Editorial Board Members Among Emergency Medicine Journals.急诊医学期刊编辑委员会成员的性别分布。
Ann Emerg Med. 2021 Jan;77(1):117-123. doi: 10.1016/j.annemergmed.2020.03.027. Epub 2020 May 4.
6
Sex and gender reporting in global health: new editorial policies.全球健康领域中的性别与性取向报告:新编辑政策
BMJ Glob Health. 2018 Jul 26;3(4):e001038. doi: 10.1136/bmjgh-2018-001038. eCollection 2018.
7
The rapid rise of a research nation.一个科研大国的迅速崛起。
Nature. 2015 Dec 17;528(7582):S170-3. doi: 10.1038/528S170a.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验