Suppr超能文献

通过空间显式捕获-再捕获来估计多个尺度上的动物丰度。

Estimating animal abundance at multiple scales by spatially explicit capture-recapture.

机构信息

Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Peterborough, Ontario, Canada.

Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada.

出版信息

Ecol Appl. 2022 Oct;32(7):e2638. doi: 10.1002/eap.2638. Epub 2022 Jun 29.

Abstract

Information about how animal abundance varies across landscapes is needed to inform management action but is costly and time-consuming to obtain; surveys of a single population distributed over a large area can take years to complete. Surveys employing small, spatially replicated sampling units improve efficiency, but statistical estimators rely on assumptions that constrain survey design or become less reasonable as larger areas are sampled. Efficient methods that avoid assumptions about similarity of detectability or density among replicates are therefore appealing. Using simulations and data from >3500 black bears sampled on 73 independent study areas in Ontario, Canada, we (1) quantified bias induced by unmodeled spatial heterogeneity in detectability and density; (2) evaluated novel, design-based estimators of average density across replicate study areas; and (3) evaluated two estimators of the variance of average density across study areas: an analytic estimator that assumed an underlying homogeneous spatial Poisson point process for the distribution of animals' activity centers, and an empirical estimator of variance across study areas. In simulations where detectability varied in space, assuming spatially constant detectability yielded density estimates that were negatively biased by 20% to 30%; estimating local detectability and density from local data and treating study areas as independent, equal replicates when estimating average density across study areas using the design-based estimator yielded unbiased estimates at local and landscape scales. Similarly, detectability of black bears varied among study areas and estimates of bear density at landscape scales were higher when no information was shared across study areas when estimating detectability. This approach also maximized precision (relative SEs of estimates of average black bear density ranged from 7% to 18%) and computational efficiency. In simulations, the analytic variance estimator was robust to threefold variation in local densities but the empirical estimator performed poorly. Conducting multiple, similar SECR surveys and treating them as independent replicates during analyses allowed us to efficiently estimate density at multiple scales and extents while avoiding biases caused by pooling spatially heterogeneous data. This approach enables researchers to address a wide range of ecological or management-related questions and is applicable with most types of SECR data.

摘要

需要了解动物丰度在景观中的变化情况,以便为管理行动提供信息,但获取这些信息既昂贵又耗时;对分布在大面积区域的单一种群进行调查可能需要数年时间才能完成。采用小的、空间复制采样单元的调查可以提高效率,但统计估计器依赖于假设,这些假设限制了调查设计,或者随着更大面积的采样变得不太合理。因此,避免在可检测性或密度相似性方面做出假设的高效方法是吸引人的。我们使用来自加拿大安大略省 73 个独立研究区域的超过 3500 只黑熊的模拟数据和数据(1)量化了未建模的可检测性和密度空间异质性引起的偏差;(2)评估了跨重复研究区域平均密度的新的基于设计的估计器;(3)评估了跨研究区域平均密度方差的两个估计器:一个假设动物活动中心分布具有潜在同质空间泊松点过程的分析估计器,以及跨研究区域方差的经验估计器。在可检测性随空间变化的模拟中,假设空间上的可检测性不变会导致密度估计值产生 20%到 30%的负偏差;从局部数据中估计局部可检测性和密度,并在使用基于设计的估计器跨研究区域估计平均密度时将研究区域视为独立的、相等的重复,可在局部和景观尺度上产生无偏估计。同样,黑熊的可检测性在研究区域之间存在差异,当在估计可检测性时不跨研究区域共享信息时,景观尺度上的熊密度估计值更高。这种方法还最大限度地提高了精度(平均黑熊密度估计值的相对标准误差范围为 7%至 18%)和计算效率。在模拟中,分析方差估计器对局部密度三倍变化具有鲁棒性,而经验估计器表现不佳。在分析中进行多次类似的 SECR 调查并将其视为独立的重复,可使我们在避免因合并空间异质数据而导致偏差的同时,有效地在多个尺度和范围上估计密度。这种方法使研究人员能够解决广泛的生态或管理相关问题,并且适用于大多数类型的 SECR 数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a95/9788300/eb3eb27a70b7/EAP-32-e2638-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验