Institute for Artificial Intelligence Research, Hanyang University, Seoul 04763, Republic of Korea.
Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Bioinformatics. 2022 May 26;38(11):2980-2987. doi: 10.1093/bioinformatics/btac280.
Tandem mass tag (TMT)-based tandem mass spectrometry (MS/MS) has become the method of choice for the quantification of post-translational modifications in complex mixtures. Many cancer proteogenomic studies have highlighted the importance of large-scale phosphopeptide quantification coupled with TMT labeling. Herein, we propose a predicted Spectral DataBase (pSDB) search strategy called Deephos that can improve both sensitivity and specificity in identifying MS/MS spectra of TMT-labeled phosphopeptides.
With deep learning-based fragment ion prediction, we compiled a pSDB of TMT-labeled phosphopeptides generated from ∼8000 human phosphoproteins annotated in UniProt. Deep learning could successfully recognize the fragmentation patterns altered by both TMT labeling and phosphorylation. In addition, we discuss the decoy spectra for false discovery rate (FDR) estimation in the pSDB search. We show that FDR could be inaccurately estimated by the existing decoy spectra generation methods and propose an innovative method to generate decoy spectra for more accurate FDR estimation. The utilities of Deephos were demonstrated in multi-stage analyses (coupled with database searches) of glioblastoma, acute myeloid leukemia and breast cancer phosphoproteomes.
Deephos pSDB and the search software are available at https://github.com/seungjinna/deephos.
基于串联质量标签 (TMT) 的串联质谱 (MS/MS) 已成为复杂混合物中翻译后修饰定量的首选方法。许多癌症蛋白质组学研究强调了与 TMT 标记相结合的大规模磷酸肽定量的重要性。在此,我们提出了一种名为 Deephos 的预测谱数据库 (pSDB) 搜索策略,该策略可以提高鉴定 TMT 标记磷酸肽的 MS/MS 谱的灵敏度和特异性。
通过基于深度学习的片段离子预测,我们编译了一个包含 TMT 标记磷酸肽的 pSDB,这些磷酸肽来自 UniProt 中注释的约 8000 个人类磷酸蛋白。深度学习可以成功识别 TMT 标记和磷酸化改变的碎裂模式。此外,我们还讨论了 pSDB 搜索中用于错误发现率 (FDR) 估计的诱饵谱。我们表明,现有的诱饵谱生成方法可能会导致不准确的 FDR 估计,并提出了一种生成诱饵谱以进行更准确 FDR 估计的创新方法。Deephos 的实用性在胶质母细胞瘤、急性髓系白血病和乳腺癌磷酸蛋白质组的多阶段分析(与数据库搜索相结合)中得到了证明。
Deephos pSDB 和搜索软件可在 https://github.com/seungjinna/deephos 上获得。