School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh, Scotland EH9 3BF, United Kingdom.
J Chem Inf Model. 2022 May 23;62(10):2264-2268. doi: 10.1021/acs.jcim.2c00285. Epub 2022 Apr 20.
A simplistic assumption in setting up a competition assay is that a low affinity labeled ligand can be more easily displaced from a target protein than a high affinity ligand, which in turn produces a more sensitive assay. An often-cited paper correctly rallies against this assumption and recommends the use of the highest affinity ligand available for experiments aiming to determine competitive inhibitor affinities. However, we have noted this advice being applied incorrectly to competition-based primary screens where the goal is optimum assay sensitivity, enabling a clear yes/no binding determination for even low affinity interactions. The published advice only applies to secondary, confirmatory assays intended for accurate affinity determination of primary screening hits. We demonstrate that using very high affinity ligands in competition-based primary screening can lead to reduced assay sensitivity and, ultimately, the discarding of potentially valuable active compounds. We build on techniques developed in our PyBindingCurve software for a mechanistic understanding of complex biological interaction systems, developing the "CLAffinity tool" for simulating competition experiments using protein, ligand, and inhibitor concentrations common to drug screening campaigns. CLAffinity reveals optimum labeled ligand affinity ranges based on assay parameters, rather than general rules to optimize assay sensitivity. We provide the open source CLAffinity software toolset to carry out assay simulations and a video summarizing key findings to aid in understanding, along with a simple lookup table allowing identification of optimal dynamic ranges for competition-based primary screens. The application of our freely available software and lookup tables will lead to the consistent creation of more performant competition-based primary screens identifying valuable hit compounds, particularly for difficult targets.
在建立竞争测定法时,一个简单的假设是,低亲和力标记配体比高亲和力配体更容易从靶蛋白中置换出来,这反过来又产生了更灵敏的测定法。一篇经常被引用的论文正确地反对了这一假设,并建议在旨在确定竞争性抑制剂亲和力的实验中使用最高亲和力的配体。然而,我们注意到,这种建议被错误地应用于基于竞争的初步筛选,这些筛选的目的是优化测定的灵敏度,以便即使是低亲和力的相互作用也能进行清晰的“是/否”结合测定。已发表的建议仅适用于旨在准确确定初步筛选命中物亲和力的二级、确证性测定。我们证明,在基于竞争的初步筛选中使用非常高亲和力的配体可能会导致测定灵敏度降低,最终丢弃潜在有价值的活性化合物。我们借鉴了在我们的 PyBindingCurve 软件中开发的技术,用于对复杂的生物相互作用系统进行机制理解,开发了“CLAffinity 工具”,用于模拟使用药物筛选中常见的蛋白质、配体和抑制剂浓度进行竞争实验。CLAffinity 根据测定参数而不是优化测定灵敏度的一般规则,确定最佳标记配体亲和力范围。我们提供开源的 CLAffinity 软件工具套件来进行测定模拟,并提供一个视频总结关键发现,以帮助理解,以及一个简单的查找表,允许确定基于竞争的初步筛选的最佳动态范围。我们免费提供的软件和查找表的应用将导致更具性能的基于竞争的初步筛选的一致创建,从而识别有价值的命中化合物,特别是对于困难的靶标。