Department of Veterinary Biosciences.
Wright Center of Innovation in Biomedical Imaging, and.
Am J Respir Cell Mol Biol. 2022 Jun;66(6):682-693. doi: 10.1165/rcmb.2021-0512OC.
Development of acute respiratory distress syndrome (ARDS) in influenza A virus (IAV)-infected mice is associated with inhibition of ATII (alveolar type II) epithelial cell phosphatidylcholine synthesis, and administration of the phosphatidylcholine precursor cytidine 5'-diphosphocholine (CDP-choline) attenuates IAV-induced acute respiratory distress syndrome in mice. We hypothesized inhibition of phosphatidylcholine synthesis would also impact the function of ATII cell mitochondria. To test this hypothesis, adult C57BL/6 mice of both sexes were inoculated intranasally with 10,000 pfu/mouse influenza A/WSN/33 (H1N1). Control mice were mock-infected with virus diluent. Mice were treated with saline vehicle or CDP-choline (100 μg/mouse i.p.) once daily from 1 to 5 days postinoculation (dpi). ATII cells were isolated by a standard lung digestion protocol at 6 dpi for analysis of mitochondrial function. IAV infection increased uptake of the glucose analog fludeoxyglucose F 18 by the lungs and caused a switch from oxidative phosphorylation to aerobic glycolysis as a primary means of ATII cell ATP synthesis by 6 dpi. Infection also induced ATII cell mitochondrial depolarization and shrinkage, upregulation of PGC-1α, decreased cardiolipin content, and reduced expression of mitofusin 1, OPA1, DRP1, complexes I and IV of the electron transport chain, and enzymes involved in cardiolipin synthesis. Daily CDP-choline treatment prevented the declines in oxidative phosphorylation, mitochondrial membrane potential, and cardiolipin synthesis resulting from IAV infection but did not fully reverse the glycolytic shift. CDP-choline also did not prevent the alterations in mitochondrial protein expression resulting from infection. Taken together, our data show ATII cell mitochondrial dysfunction after IAV infection results from impaired phospholipid synthesis, but the glycolytic shift does not.
甲型流感病毒(IAV)感染小鼠中急性呼吸窘迫综合征(ARDS)的发展与 II 型肺泡(ATII)上皮细胞磷脂酰胆碱合成的抑制有关,而磷脂酰胆碱前体胞苷 5'-二磷酸胆碱(CDP-胆碱)的给药可减轻小鼠的 IAV 诱导的急性呼吸窘迫综合征。我们假设磷脂酰胆碱合成的抑制也会影响 ATII 细胞线粒体的功能。为了验证这一假设,我们对雌雄两性成年 C57BL/6 小鼠进行了 10000 个病毒感染单位(pfu)/鼠的流感病毒 A/WSN/33(H1N1)滴鼻接种。对照小鼠用病毒稀释液进行模拟感染。从接种后 1 至 5 天(dpi),每天一次给予小鼠生理盐水载体或 CDP-胆碱(100μg/鼠,腹腔内)。在 6dpi 时,通过标准的肺消化方案分离 ATII 细胞,以分析线粒体功能。IAV 感染增加了肺部葡萄糖类似物氟脱氧葡萄糖 F 18 的摄取,并导致 6dpi 时 ATII 细胞 ATP 合成的主要方式从氧化磷酸化转变为有氧糖酵解。感染还诱导 ATII 细胞线粒体去极化和萎缩、PGC-1α 的上调、心磷脂含量减少以及融合蛋白 1、OPA1、DRP1、电子传递链复合物 I 和 IV 和心磷脂合成相关酶的表达减少。每天的 CDP-胆碱处理可防止 IAV 感染引起的氧化磷酸化、线粒体膜电位和心磷脂合成的下降,但不能完全逆转糖酵解转变。CDP-胆碱也不能防止感染引起的线粒体蛋白表达的改变。总之,我们的数据表明,IAV 感染后 ATII 细胞线粒体功能障碍是由于磷脂合成受损引起的,但糖酵解转变不是。