Suppr超能文献

利用机器学习技术,通过检测野生鱼类肠道微生物菌群,揭示受损水生态环境。

Gut microbiota of wild fish as reporters of compromised aquatic environments sleuthed through machine learning.

机构信息

Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.

出版信息

Physiol Genomics. 2022 May 1;54(5):177-185. doi: 10.1152/physiolgenomics.00002.2022. Epub 2022 Apr 20.

Abstract

Human-generated negative impacts on aquatic environments are rising. Despite wild fish playing a key role in aquatic ecologies and comprising a major global food source, physiological consequences of these impacts on them are poorly understood. Here we address the issue through the lens of interrelationship between wild fish and their gut microbiota, hypothesizing that fish microbiota are reporters of the aquatic environs. Two geographically separate teleost wild-fish species were studied (Lake Erie, Ohio, and Caribbean Sea, US Virgin Islands). At each geolocation, fresh fecal samples were collected from fish in areas of presence or absence of known aquatic compromise. Gut microbiota was assessed via microbial 16S-rRNA gene sequencing and represents the first complete report for both fish species. Despite marked differences in geography, climate, water type, fish species, habitat, diet, and gut microbial compositions, the pattern of shifts in microbiota shared by both fish species was nearly identical due to aquatic compromise. Next, these data were subjected to machine learning (ML) to examine reliability of using the fish-gut microbiota as an ecomarker for anthropogenic aquatic impacts. Independent of geolocation, ML predicted aquatic compromise with remarkable accuracy (>90%). Overall, this study represents the first multispecies stress-related comparison of its kind and demonstrates the potential of artificial intelligence via ML as a tool for biomonitoring and detecting compromised aquatic conditions.

摘要

人类对水生环境的负面影响正在上升。尽管野生鱼类在水生生态系统中起着关键作用,是全球主要的食物来源之一,但人们对这些影响对它们造成的生理后果知之甚少。在这里,我们通过野生鱼类与其肠道微生物群之间的相互关系的视角来解决这个问题,假设鱼类的微生物群是水生环境的报告者。我们研究了两种地理位置不同的硬骨鱼类野生鱼类物种(俄亥俄州的伊利湖和美国维尔京群岛的加勒比海)。在每个地理位置,从存在或不存在已知水生环境问题的区域采集新鲜的粪便样本。通过微生物 16S-rRNA 基因测序评估肠道微生物群,这代表了这两个鱼类物种的第一个完整报告。尽管地理位置、气候、水类型、鱼类物种、栖息地、饮食和肠道微生物组成存在明显差异,但由于水生环境问题,两种鱼类物种的微生物群变化模式几乎相同。接下来,我们将这些数据提交给机器学习 (ML) 分析,以检查使用鱼类肠道微生物群作为人为水生影响的生态标志物的可靠性。无论地理位置如何,ML 都能以惊人的准确性 (>90%) 预测水生环境问题。总的来说,这项研究代表了同类研究中首次对多种与压力相关的物种进行比较,并展示了通过机器学习 (ML) 作为生物监测和检测受影响的水生条件的工具的人工智能的潜力。

相似文献

本文引用的文献

1
Human encroachment into wildlife gut microbiomes.人类侵占野生动物肠道微生物组。
Commun Biol. 2021 Jun 25;4(1):800. doi: 10.1038/s42003-021-02315-7.
4
Multiple stressor effects on coral reef ecosystems.多种压力源对珊瑚礁生态系统的影响。
Glob Chang Biol. 2019 Dec;25(12):4131-4146. doi: 10.1111/gcb.14819. Epub 2019 Oct 9.
8
Disparate effects of antibiotics on hypertension.抗生素对高血压的不同影响。
Physiol Genomics. 2018 Oct 1;50(10):837-845. doi: 10.1152/physiolgenomics.00073.2018. Epub 2018 Aug 10.
9
Ecosystem services in the Great Lakes.五大湖的生态系统服务
J Great Lakes Res. 2017 Jun 1;43(3):161-168. doi: 10.1016/j.jglr.2017.02.004.
10
The Gut Microbiota of Marine Fish.海洋鱼类的肠道微生物群
Front Microbiol. 2018 May 4;9:873. doi: 10.3389/fmicb.2018.00873. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验