Suppr超能文献

红外光谱和高光谱成像技术与人工智能的结合在谷物品质检测中的应用进展。

Advances in infrared spectroscopy and hyperspectral imaging combined with artificial intelligence for the detection of cereals quality.

机构信息

National Innovation Center for Digital Fishery, China Agricultural University, Beijing, China.

Key Laboratory of Smart Farming Technologies for Aquatic Animals and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.

出版信息

Crit Rev Food Sci Nutr. 2023;63(29):9766-9796. doi: 10.1080/10408398.2022.2066062. Epub 2022 Apr 20.

Abstract

Cereals provide humans with essential nutrients, and its quality assessment has attracted widespread attention. Infrared (IR) spectroscopy (IRS) and hyperspectral imaging (HSI), as powerful nondestructive testing technologies, are widely used in the quality monitoring of food and agricultural products. Artificial intelligence (AI) plays a crucial role in data mining, especially in recent years, a new generation of AI represented by deep learning (DL) has made breakthroughs in analyzing spectral data of food and agricultural products. The combination of IRS/HSI and AI further promotes the development of quality evaluation of cereals. This paper comprehensively reviews the advances of IRS and HSI combined with AI in the detection of cereals quality. The aim is to present a complete review topic as it touches the background knowledge, instrumentation, spectral data processing (including preprocessing, feature extraction and modeling), spectral interpretation, etc. To suit this goal, principles of IRS and HSI, as well as basic concepts related to AI are first introduced, followed by a critical evaluation of representative reports integrating IRS and HSI with AI. Finally, the advantages, challenges and future trends of IRS and HSI combined with AI are further discussed, so as to provide constructive suggestions and guidance for researchers.

摘要

谷物为人类提供了必需的营养物质,其质量评估受到了广泛关注。近红外(IR)光谱(IRS)和高光谱成像(HSI)作为强大的无损检测技术,广泛应用于食品和农产品的质量监测中。人工智能(AI)在数据挖掘中起着至关重要的作用,尤其是近年来,以深度学习(DL)为代表的新一代 AI 在分析食品和农产品的光谱数据方面取得了突破。IRS/HSI 与 AI 的结合进一步推动了谷物质量评价的发展。本文全面综述了 IRS 和 HSI 结合 AI 在检测谷物质量方面的研究进展。旨在呈现一个完整的综述主题,涉及背景知识、仪器、光谱数据处理(包括预处理、特征提取和建模)、光谱解释等。为此,本文首先介绍了 IRS 和 HSI 的原理以及与 AI 相关的基本概念,然后对结合 AI 的 IRS 和 HSI 的代表性报告进行了批判性评估。最后,进一步讨论了 IRS 和 HSI 结合 AI 的优点、挑战和未来趋势,为研究人员提供了建设性的建议和指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验