Suppr超能文献

红外光谱结合人工神经网络在食品鉴别和可追溯性方面的进展。

Advances in infrared spectroscopy combined with artificial neural network for the authentication and traceability of food.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China.

出版信息

Crit Rev Food Sci Nutr. 2022;62(11):2963-2984. doi: 10.1080/10408398.2020.1862045. Epub 2020 Dec 21.

Abstract

The authentication and traceability of food attract more attention due to the increasing consumer awareness regarding nutrition and health, being a new hotspot of food science. Infrared spectroscopy (IRS) combined with shallow neural network has been widely proven to be an effective food analysis technology. As an advanced deep learning technology, deep neural network has also been explored to analyze and solve food-related IRS problems in recent years. The present review begins with brief introductions to IRS and artificial neural network (ANN), including shallow neural network and deep neural network. More notably, it emphasizes the comprehensive overview of the advances of the technology combined IRS with ANN for the authentication and traceability of food, based on relevant literature from 2014 to early 2020. In detail, the types of IRS and ANN, modeling processes, experimental results, and model comparisons in related studies are described to set forth the usage and performance of the combined technology for food analysis. The combined technology shows excellent ability to authenticate food quality and safety, involving chemical components, freshness, microorganisms, damages, toxic substances, and adulteration. As well, it shows excellent performance in the traceability of food variety and origin. The advantages, current limitations, and future trends of the combined technology are further discussed to provide a thoughtful viewpoint on the challenges and expectations of online applications for the authentication and traceability of food.

摘要

由于消费者对营养和健康的意识不断提高,食品的认证和可追溯性越来越受到关注,这成为食品科学的一个新热点。已经有大量证据表明,红外光谱(IRS)结合浅层神经网络是一种有效的食品分析技术。作为一种先进的深度学习技术,近年来也有人探索使用深度神经网络来分析和解决与食品相关的 IRS 问题。本综述首先简要介绍了 IRS 和人工神经网络(ANN),包括浅层神经网络和深度神经网络。更值得注意的是,它重点全面概述了 IRS 与 ANN 相结合在食品认证和可追溯性方面的技术进展,基于 2014 年至 2020 年初的相关文献。详细描述了相关研究中 IRS 和 ANN 的类型、建模过程、实验结果和模型比较,以阐述该联合技术在食品分析中的应用和性能。该联合技术在食品质量和安全的认证方面表现出了优异的能力,涉及化学成分、新鲜度、微生物、损伤、有毒物质和掺假。此外,它在食品品种和来源的追溯方面也表现出了优异的性能。进一步讨论了该联合技术的优势、当前的局限性和未来的发展趋势,为食品认证和可追溯性的在线应用的挑战和期望提供了一个深思熟虑的观点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验