Suppr超能文献

利用高光谱成像技术和三维卷积神经网络对多年和多品种南瓜籽进行分类。

Classification of multi-year and multi-variety pumpkin seeds using hyperspectral imaging technology and three-dimensional convolutional neural network.

作者信息

Li Xiyao, Feng Xuping, Fang Hui, Yang Ningyuan, Yang Guofeng, Yu Zeyu, Shen Jia, Geng Wei, He Yong

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.

The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China.

出版信息

Plant Methods. 2023 Aug 10;19(1):82. doi: 10.1186/s13007-023-01057-3.

Abstract

BACKGROUND

Pumpkin seeds are major oil crops with high nutritional value and high oil content. The collection and identification of different pumpkin germplasm resources play a significant role in the realization of precision breeding and variety improvement. In this research, we collected 75 species of pumpkin from the Zhejiang Province of China. 35,927 near-infrared hyperspectral images of 75 types of pumpkin seeds were used as the research object.

RESULTS

To realize the rapid classification of pumpkin seed varieties, position attention embedded three-dimensional convolutional neural network (PA-3DCNN) was designed based on hyperspectral image technology. The experimental results showed that PA-3DCNN had the best classification effect than other classical machine learning technology. The classification accuracy of 99.14% and 95.20% were severally reached on the training and test sets. We also demonstrated that the PA-3DCNN model performed well in next year's classification with fine-tuning and met with 94.8% accuracy.

CONCLUSIONS

The model performance improved by introducing double convolution and pooling structure and position attention module. Meanwhile, the generalization performance of the model was verified, which can be adopted for the classification of pumpkin seeds in multiple years. This study provided a new strategy and a feasible technical approach for identifying germplasm resources of pumpkin seeds.

摘要

背景

南瓜籽是具有高营养价值和高含油量的主要油料作物。不同南瓜种质资源的收集与鉴定对实现精准育种和品种改良具有重要意义。本研究从中国浙江省收集了75种南瓜。以75种南瓜籽的35927幅近红外高光谱图像为研究对象。

结果

为实现南瓜籽品种的快速分类,基于高光谱图像技术设计了位置注意力嵌入三维卷积神经网络(PA-3DCNN)。实验结果表明,PA-3DCNN比其他经典机器学习技术具有更好的分类效果。在训练集和测试集上分别达到了99.14%和95.20%的分类准确率。我们还证明,通过微调,PA-3DCNN模型在次年的分类中表现良好,准确率达到94.8%。

结论

通过引入双卷积池化结构和位置注意力模块提高了模型性能。同时,验证了模型的泛化性能,可用于多年南瓜籽的分类。本研究为南瓜籽种质资源鉴定提供了新策略和可行的技术途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96a8/10413611/dc66e95e0dba/13007_2023_1057_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验