IEEE Trans Med Imaging. 2022 Oct;41(10):2615-2628. doi: 10.1109/TMI.2022.3168793. Epub 2022 Sep 30.
Laser osteotomy promises precise cutting and minor bone tissue damage. We proposed Optical Coherence Tomography (OCT) to monitor the ablation process toward our smart laser osteotomy approach. The OCT image is helpful to identify tissue type and provide feedback for the ablation laser to avoid critical tissues such as bone marrow and nerve. Furthermore, in the implementation, the tissue classifier's accuracy is dependent on the quality of the OCT image. Therefore, image denoising plays an important role in having an accurate feedback system. A common OCT image denoising technique is the frame-averaging method. Inherent to this method is the need for multiple images, i.e., the more images used, the better the resulting image quality. However, this approach comes at the price of increased acquisition time and sensitivity to motion artifacts. To overcome these limitations, we applied a deep-learning denoising method capable of imitating the frame-averaging method. The resulting image had a similar image quality to the frame-averaging and was better than the classical digital filtering methods. We also evaluated if this method affects the tissue classifier model's accuracy that will provide feedback to the ablation laser. We found that image denoising significantly increased the accuracy of the tissue classifier. Furthermore, we observed that the classifier trained using the deep learning denoised images achieved similar accuracy to the classifier trained using frame-averaged images. The results suggest the possibility of using the deep learning method as a pre-processing step for real-time tissue classification in smart laser osteotomy.
激光截骨术有望实现精确切割和最小的骨组织损伤。我们提出了光学相干断层扫描(OCT)来监测我们的智能激光截骨术的消融过程。OCT 图像有助于识别组织类型,并为消融激光提供反馈,以避免骨髓和神经等关键组织。此外,在实施过程中,组织分类器的准确性取决于 OCT 图像的质量。因此,图像去噪在实现准确的反馈系统中起着重要作用。一种常见的 OCT 图像去噪技术是帧平均法。这种方法固有的需要多个图像,即使用的图像越多,得到的图像质量越好。然而,这种方法的代价是增加采集时间和对运动伪影的敏感性。为了克服这些限制,我们应用了一种能够模仿帧平均法的深度学习去噪方法。得到的图像具有与帧平均法相似的图像质量,优于经典的数字滤波方法。我们还评估了这种方法是否会影响为消融激光提供反馈的组织分类器模型的准确性。我们发现图像去噪显著提高了组织分类器的准确性。此外,我们观察到,使用深度学习去噪图像训练的分类器与使用帧平均图像训练的分类器具有相似的准确性。结果表明,深度学习方法有可能作为智能激光截骨术中实时组织分类的预处理步骤。