Suppr超能文献

利用人工神经网络预测 KCNQ1 变异的功能影响。

Predicting the functional impact of KCNQ1 variants with artificial neural networks.

机构信息

Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America.

Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America.

出版信息

PLoS Comput Biol. 2022 Apr 20;18(4):e1010038. doi: 10.1371/journal.pcbi.1010038. eCollection 2022 Apr.

Abstract

Recent advances in experimental and computational protein structure determination have provided access to high-quality structures for most human proteins and mutants thereof. However, linking changes in structure in protein mutants to functional impact remains an active area of method development. If successful, such methods can ultimately assist physicians in taking appropriate treatment decisions. This work presents three artificial neural network (ANN)-based predictive models that classify four key functional parameters of KCNQ1 variants as normal or dysfunctional using PSSM-based evolutionary and/or biophysical descriptors. Recent advances in predicting protein structure and variant properties with artificial intelligence (AI) rely heavily on the availability of evolutionary features and thus fail to directly assess the biophysical underpinnings of a change in structure and/or function. The central goal of this work was to develop an ANN model based on structure and physiochemical properties of KCNQ1 potassium channels that performs comparably or better than algorithms using only on PSSM-based evolutionary features. These biophysical features highlight the structure-function relationships that govern protein stability, function, and regulation. The input sensitivity algorithm incorporates the roles of hydrophobicity, polarizability, and functional densities on key functional parameters of the KCNQ1 channel. Inclusion of the biophysical features outperforms exclusive use of PSSM-based evolutionary features in predicting activation voltage dependence and deactivation time. As AI is increasingly applied to problems in biology, biophysical understanding will be critical with respect to 'explainable AI', i.e., understanding the relation of sequence, structure, and function of proteins. Our model is available at www.kcnq1predict.org.

摘要

最近在实验和计算蛋白质结构测定方面的进展为大多数人类蛋白质及其突变体提供了高质量的结构。然而,将蛋白质突变体结构的变化与功能影响联系起来仍然是方法开发的一个活跃领域。如果成功,这些方法最终可以帮助医生做出适当的治疗决策。本工作提出了三个基于人工神经网络(ANN)的预测模型,这些模型使用基于 PSSM 的进化和/或物理化学描述符,将 KCNQ1 变体的四个关键功能参数分类为正常或功能失调。最近,利用人工智能(AI)预测蛋白质结构和变体特性的进展在很大程度上依赖于进化特征的可用性,因此无法直接评估结构和/或功能变化的物理化学基础。本工作的中心目标是开发一个基于 KCNQ1 钾通道结构和物理化学特性的 ANN 模型,该模型的性能与仅使用基于 PSSM 的进化特征的算法相当或更好。这些物理化学特征突出了控制蛋白质稳定性、功能和调节的结构-功能关系。输入灵敏度算法包含疏水性、极化率和关键功能参数的功能密度在 KCNQ1 通道中的作用。包含物理化学特征在预测激活电压依赖性和失活时间方面优于仅使用基于 PSSM 的进化特征。随着 AI 在生物学问题中的应用越来越广泛,物理化学理解将对于“可解释 AI”至关重要,即理解蛋白质的序列、结构和功能之间的关系。我们的模型可在 www.kcnq1predict.org 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3192/9060377/c13467e1d092/pcbi.1010038.g001.jpg

相似文献

1
Predicting the functional impact of KCNQ1 variants with artificial neural networks.
PLoS Comput Biol. 2022 Apr 20;18(4):e1010038. doi: 10.1371/journal.pcbi.1010038. eCollection 2022 Apr.
2
Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance.
Circ Cardiovasc Genet. 2017 Oct;10(5). doi: 10.1161/CIRCGENETICS.117.001754.
3
Upgraded molecular models of the human KCNQ1 potassium channel.
PLoS One. 2019 Sep 13;14(9):e0220415. doi: 10.1371/journal.pone.0220415. eCollection 2019.
4
Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain.
J Am Soc Mass Spectrom. 2020 Nov 4;31(11):2348-2355. doi: 10.1021/jasms.0c00288. Epub 2020 Sep 30.
5
Protein structure aids predicting functional perturbation of missense variants in and .
Comput Struct Biotechnol J. 2019 Feb 1;17:206-214. doi: 10.1016/j.csbj.2019.01.008. eCollection 2019.
6
Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (K7.1) Potassium Channels.
Adv Exp Med Biol. 2021;1349:335-353. doi: 10.1007/978-981-16-4254-8_15.
7
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183148. doi: 10.1016/j.bbamem.2019.183148. Epub 2019 Dec 9.
8
The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes.
J Gen Physiol. 2007 Feb;129(2):121-33. doi: 10.1085/jgp.200609612. Epub 2007 Jan 16.
9
Machine learning random forest for predicting oncosomatic variant NGS analysis.
Sci Rep. 2021 Nov 8;11(1):21820. doi: 10.1038/s41598-021-01253-y.
10
KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate.
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22710-5. doi: 10.1073/pnas.1016300108. Epub 2010 Dec 13.

引用本文的文献

1
Predicting the Damaging Potential of Uncharacterized and Variants.
Int J Mol Sci. 2025 Jul 8;26(14):6561. doi: 10.3390/ijms26146561.
2
Integrative analysis of KCNQ1 variants reveals molecular mechanisms of type 1 long QT syndrome pathogenesis.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2412971122. doi: 10.1073/pnas.2412971122. Epub 2025 Feb 19.
3
MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense Gene Variants.
Int J Mol Sci. 2024 Mar 2;25(5):2910. doi: 10.3390/ijms25052910.
4
Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels.
PLoS Comput Biol. 2023 Sep 15;19(9):e1011460. doi: 10.1371/journal.pcbi.1011460. eCollection 2023 Sep.
5
Evolutionary coupling analysis guides identification of mistrafficking-sensitive variants in cardiac K channels: Validation with hERG.
Front Pharmacol. 2022 Oct 20;13:1010119. doi: 10.3389/fphar.2022.1010119. eCollection 2022.

本文引用的文献

1
Compendium of causative genes and their encoded proteins for common monogenic disorders.
Protein Sci. 2022 Jan;31(1):75-91. doi: 10.1002/pro.4183. Epub 2021 Sep 21.
2
AI in medicine must be explainable.
Nat Med. 2021 Aug;27(8):1328. doi: 10.1038/s41591-021-01461-z.
3
Functional evaluation of human ion channel variants using automated electrophysiology.
Methods Enzymol. 2021;654:383-405. doi: 10.1016/bs.mie.2021.02.011. Epub 2021 Apr 9.
4
Disease-linked supertrafficking of a potassium channel.
J Biol Chem. 2021 Jan-Jun;296:100423. doi: 10.1016/j.jbc.2021.100423. Epub 2021 Feb 16.
5
General Purpose Structure-Based Drug Discovery Neural Network Score Functions with Human-Interpretable Pharmacophore Maps.
J Chem Inf Model. 2021 Feb 22;61(2):603-620. doi: 10.1021/acs.jcim.0c01001. Epub 2021 Jan 26.
6
A computational model of induced pluripotent stem-cell derived cardiomyocytes for high throughput risk stratification of KCNQ1 genetic variants.
PLoS Comput Biol. 2020 Aug 14;16(8):e1008109. doi: 10.1371/journal.pcbi.1008109. eCollection 2020 Aug.
9
Causability and explainability of artificial intelligence in medicine.
Wiley Interdiscip Rev Data Min Knowl Discov. 2019 Jul-Aug;9(4):e1312. doi: 10.1002/widm.1312. Epub 2019 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验