Suppr超能文献

MLe-KCNQ2:一种用于预测错义基因变异预后的人工智能模型。

MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense Gene Variants.

作者信息

Saez-Matia Alba, Ibarluzea Markel G, M-Alicante Sara, Muguruza-Montero Arantza, Nuñez Eider, Ramis Rafael, Ballesteros Oscar R, Lasa-Goicuria Diego, Fons Carmen, Gallego Mónica, Casis Oscar, Leonardo Aritz, Bergara Aitor, Villarroel Alvaro

机构信息

Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain.

Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain.

出版信息

Int J Mol Sci. 2024 Mar 2;25(5):2910. doi: 10.3390/ijms25052910.

Abstract

Despite the increasing availability of genomic data and enhanced data analysis procedures, predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To address this challenge, we have focused on the K7.2 voltage-gated potassium channel gene (), known for its link to developmental delays and various epilepsies, including self-limited benign familial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to discriminate variant severity. This study introduces a novel approach by evaluating multiple machine learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95 (AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This study not only presents a transferable methodology for accurately classifying missense variants, but also provides valuable insights for clinical counseling and aids in the determination of variant severity. The research context emphasizes the necessity of precise variant classification, especially for genes like , contributing to the broader understanding of gene-specific challenges in the field of genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision making and prognosis in the realm of -related pathologies.

摘要

尽管基因组数据的可用性不断提高,数据分析程序也有所改进,但在缺乏临床描述符的情况下,预测相关疾病的严重程度仍然难以实现。为应对这一挑战,我们重点关注了K7.2电压门控钾通道基因(),该基因因与发育迟缓及各种癫痫症相关而闻名,包括自限性良性家族性新生儿癫痫和癫痫性脑病。全基因组工具往往倾向于高估有害突变,经常忽略可耐受的变异,并且缺乏区分变异严重程度的能力。本研究引入了一种新方法,通过评估多种机器学习(ML)协议和描述符。基因组信息与新型变异频率指数(VFI)的结合为构建可靠的基因特异性ML模型奠定了坚实基础。通过逻辑回归、支持向量机、随机森林和梯度提升算法形成的集成模型MLe-KCNQ2,其特异性和敏感性值超过0.95(AUC-ROC>0.98)。集成的MLe-KCNQ2模型还将致病突变分为良性或严重,其受试者工作特征曲线下面积(AUC-ROC)高于0.67。本研究不仅提出了一种可转移的方法来准确分类错义变异,还为临床咨询提供了有价值的见解,并有助于确定变异的严重程度。研究背景强调了精确变异分类的必要性,特别是对于像这样的基因,有助于更广泛地理解基因组研究领域中基因特异性挑战。MLe-KCNQ2模型是增强与相关病理学领域临床决策和预后的一个有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ffa/10932340/466097efaba1/ijms-25-02910-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验