Suppr超能文献

静息态神经干细胞的休眠状态将 Shank3 突变与自闭症的发展联系起来。

Dormant state of quiescent neural stem cells links Shank3 mutation to autism development.

机构信息

Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry and Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.

Department of Biomedical Sciences, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Mol Psychiatry. 2022 Jun;27(6):2751-2765. doi: 10.1038/s41380-022-01563-1. Epub 2022 Apr 20.

Abstract

Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency. Using single-cell RNA sequencing (scRNA-seq) and transposase accessible chromatin profiling (ATAC-seq), we find that abnormal epigenetic features including H3K4me3 accumulation due to up-regulation of Kmt2a levels lead to increased dormancy of qNSCs in the absence of Shank3. This result in decreased active neurogenesis in the Shank3 deficient mouse brain. Remarkably, pharmacological and molecular inhibition of qNSC dormancy restored adult neurogenesis and ameliorated the social deficits observed in Shank3-deficient mice. Moreover, we confirmed restored human qNSC activity rescues abnormal neurogenesis and autism-like phenotypes in SHANK3-targeted human NSCs. Taken together, our results offer a novel strategy to control qNSC activity as a potential therapeutic target for the development of autism.

摘要

自闭症谱系障碍(ASD)是一种常见的神经发育障碍,其特征是社交互动和沟通能力缺陷、兴趣受限和重复行为。尽管进行了广泛的研究,但控制 ASD 发展的分子靶点在很大程度上仍不清楚。在这里,我们报告说,静止神经干细胞(qNSC)的休眠是一种治疗靶点,可以控制由 Shank3 缺乏驱动的 ASD 表型的发展。使用单细胞 RNA 测序(scRNA-seq)和转座酶可及染色质分析(ATAC-seq),我们发现异常的表观遗传特征,包括由于 Kmt2a 水平上调导致的 H3K4me3 积累,导致 Shank3 缺乏时 qNSC 的休眠增加。这导致 Shank3 缺陷小鼠大脑中活跃的神经发生减少。值得注意的是,qNSC 休眠的药理学和分子抑制恢复了成年神经发生,并改善了 Shank3 缺陷小鼠观察到的社交缺陷。此外,我们证实恢复人类 qNSC 活性可挽救 SHANK3 靶向人类 NSCs 中的异常神经发生和自闭症样表型。总之,我们的研究结果提供了一种控制 qNSC 活性的新策略,作为自闭症治疗的潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验