Suppr超能文献

基于网络的生存分析,以发现用于开发癌症免疫疗法的靶基因并预测患者生存情况。

Network-based survival analysis to discover target genes for developing cancer immunotherapies and predicting patient survival.

作者信息

He Xinwei, Sun Xiaoqiang, Shao Yongzhao

机构信息

New York University, USA.

Sun Yat-Sen University, China.

出版信息

J Appl Stat. 2021;48(8):1352-1373. doi: 10.1080/02664763.2020.1812543. Epub 2020 Sep 3.

Abstract

Recently, cancer immunotherapies have been life-savers, however, only a fraction of treated patients have durable responses. Consequently, statistical methods that enable the discovery of target genes for developing new treatments and predicting patient survival are of importance. This paper introduced a network-based survival analysis method and applied it to identify candidate genes as possible targets for developing new treatments. RNA-seq data from a mouse study was used to select differentially expressed genes, which were then translated to those in humans. We constructed a gene network and identified gene clusters using a training set of 310 human gliomas. Then we conducted gene set enrichment analysis to select the gene clusters with significant biological function. A penalized Cox model was built to identify a small set of candidate genes to predict survival. An independent set of 690 human glioma samples was used to evaluate predictive accuracy of the survival model. The areas under time-dependent ROC curves in both the training and validation sets are more than 90%, indicating strong association between selected genes and patient survival. Consequently, potential biomedical interventions targeting these genes might be able to alter their expressions and prolong patient survival.

摘要

最近,癌症免疫疗法已成为挽救生命的疗法,然而,只有一小部分接受治疗的患者有持久反应。因此,能够发现用于开发新疗法和预测患者生存的靶基因的统计方法至关重要。本文介绍了一种基于网络的生存分析方法,并将其应用于识别候选基因,作为开发新疗法的可能靶点。来自一项小鼠研究的RNA测序数据用于选择差异表达基因,然后将这些基因转化为人类基因。我们构建了一个基因网络,并使用310例人类胶质瘤的训练集识别基因簇。然后我们进行基因集富集分析,以选择具有显著生物学功能的基因簇。构建了一个惩罚Cox模型,以识别一小部分候选基因来预测生存。使用一组独立的690例人类胶质瘤样本评估生存模型的预测准确性。训练集和验证集中时间依赖性ROC曲线下面积均超过90%,表明所选基因与患者生存之间存在强关联。因此,针对这些基因的潜在生物医学干预可能能够改变它们的表达并延长患者生存。

相似文献

本文引用的文献

5
Targeting the microenvironment in solid tumors.靶向实体瘤的微环境。
Cancer Treat Rev. 2018 Apr;65:22-32. doi: 10.1016/j.ctrv.2018.02.004. Epub 2018 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验