Departamento de Química Física y Química Inorgánica, Facultad de Ciencias-I.U. CINQUIMA, Universidad de Valladolid, E-47011 Valladolid, Spain.
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States.
J Phys Chem Lett. 2022 Apr 28;13(16):3770-3775. doi: 10.1021/acs.jpclett.2c00671. Epub 2022 Apr 21.
Self-aggregation of sevoflurane, an inhalable, fluorinated anesthetic, provides a challenge for current state-of-the-art high-resolution techniques due to its large mass and the variety of possible hydrogen bonds between monomers. Here we present the observation of sevoflurane trimer by chirped-pulse Fourier transform microwave spectroscopy, identified through the interplay of experimental and computational methods. The trimer (>600 Da), one of the largest molecular aggregates observed through rotational spectroscopy, does not resemble the binding (C-H···O) motif of the already characterized sevoflurane dimer, instead adapting a new binding configuration created predominantly from 17 CH···F hydrogen bonds that resembles a nanomicellar arrangement. The observation of such a heavy aggregate highlights the potential of rotational spectroscopy to study larger biochemical systems in the limit of spectroscopic congestion but also showcases the challenges ahead as the mass of the system increases.
七氟醚是一种可吸入的含氟麻醉剂,其自身聚集为当前最先进的高分辨率技术带来了挑战,这是由于其巨大的质量和单体之间可能存在的多种氢键。在这里,我们通过啁啾脉冲傅里叶变换微波光谱学观察到七氟醚三聚体,通过实验和计算方法的相互作用来识别。三聚体(>600Da)是通过旋转光谱观察到的最大分子聚集体之一,它与已经表征的七氟醚二聚体的结合(C-H···O)模式不同,而是采用了一种新的结合构型,主要由 17 个 CH···F 氢键组成,类似于纳米胶束排列。如此重的聚集体的观察结果突出了旋转光谱学在光谱拥挤限制下研究更大生化系统的潜力,但也展示了随着系统质量增加而面临的挑战。