Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal.
Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal.
ACS Appl Mater Interfaces. 2022 May 4;14(17):19116-19128. doi: 10.1021/acsami.2c01161. Epub 2022 Apr 21.
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
由于大多数策略仅依赖于细胞的自我组织或过度控制细胞定位,无法解决营养扩散限制问题,因此,用于再生医学的血管化大规模构建体的制造仍然难以实现。我们提出了一种模块化和层次化的组织工程策略,以产生具有促进预血管生成信号的类骨组织。在这些 3D 系统中,具有纳米槽形貌的盘状微载体通过利用机械转导机制来指导细胞行为。在自组织和动态系统中,在分隔的、液化核心的大胶囊内实施脂肪来源的基质细胞和内皮细胞的顺序接种策略。重要的是,我们的系统自主促进成骨和构建体的矿化,同时促进有利于类血管内皮组织形成的环境。鉴于其模块化和自组织的性质,我们的策略可用于制造具有高度可控起点的更大构建体,以便在植入后进行局部再生或用作药物筛选平台。