Nguyen Bao-Ngoc B, Moriarty Rebecca A, Kamalitdinov Tim, Etheridge Julie M, Fisher John P
Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, 20742.
J Biomed Mater Res A. 2017 Apr;105(4):1123-1131. doi: 10.1002/jbm.a.36008. Epub 2017 Feb 2.
The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of such tissue engineered bone constructs can succeed, tactics to promote neovascularization need to be strengthened. We have previously demonstrated that the tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cells (hMSC). Here, we devised a strategy to address the need for a functional microvasculature by designing an in vitro coculture system that simultaneously cultures osteogenic differentiating hMSCs with endothelial cells (ECs). We utilized the TPS bioreactor as a dynamic coculture environment, which we hypothesize will encourage prevascularization of endothelial cells and early formation of bone tissue and could aid in anastomosis of the graft with the host vasculature after patient implantation. To evaluate the effect of different natural scaffolds for this coculture system, the cells were encapsulated in alginate and/or collagen hydrogel scaffolds. We discovered the necessity of cell-to-cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. We discovered increased osteogenic and angiogenic potential as seen by amplified gene and protein expression of ALP, BMP-2, VEGF, and PECAM. The TPS bioreactor further augmented these expressions, indicating a synergistic effect between coculture and applied shear stress. The development of this dynamic coculture platform for the prevascularization of engineered bone, emphasizing the importance of the construct microenvironments and will advance the clinical use of tissue engineered constructs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1123-1131, 2017.
功能性血管化组织的生成是组织工程领域面临的一项关键挑战。在这类组织工程骨构建体成功进行临床植入之前,促进新血管形成的策略需要得到加强。我们之前已经证明,管状灌注系统(TPS)生物反应器是一种有效的培养方法,可增强人骨髓间充质干细胞(hMSC)的成骨分化并维持其活力。在此,我们设计了一种策略,通过设计一种体外共培养系统来满足对功能性微血管系统的需求,该系统同时培养成骨分化的hMSC和内皮细胞(EC)。我们利用TPS生物反应器作为动态共培养环境,我们推测这将促进内皮细胞的血管前体形成和骨组织的早期形成,并有助于患者植入后移植物与宿主血管系统的吻合。为了评估不同天然支架对该共培养系统的影响,将细胞封装在藻酸盐和/或胶原蛋白水凝胶支架中。我们发现两种细胞类型之间细胞与细胞接近的必要性以及对胶原蛋白等水凝胶天然细胞结合能力的偏好。我们发现通过碱性磷酸酶(ALP)、骨形态发生蛋白-2(BMP-2)、血管内皮生长因子(VEGF)和血小板内皮细胞黏附分子(PECAM)基因和蛋白表达的增强,成骨和血管生成潜力增加。TPS生物反应器进一步增强了这些表达,表明共培养和施加的剪切应力之间存在协同效应。这种用于工程骨血管前体形成的动态共培养平台的开发,强调了构建体微环境的重要性,并将推动组织工程构建体的临床应用。©2017威利期刊公司。《生物医学材料研究杂志》A部分:第105A卷:1123 - 1131页,2017年。