Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557.
Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2123020119. doi: 10.1073/pnas.2123020119. Epub 2022 Apr 21.
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
蠕动反射是胃肠道(GI)的基本行为,其中黏膜刺激激活推进性收缩。该反射通过刺激固有初级传入神经元来发生,这些神经元的细胞体位于肌间神经丛中,投射到固有层,信息通过中间神经元分布,然后激活肌肉运动神经元。目前的概念是,兴奋性胆碱能运动神经元在刺激部位近端被激活,而抑制性神经元在刺激部位远端被激活。我们发现,阿托品可减少但不能阻断小鼠、猴子和人结肠中的结肠移行性运动复合波(CMMC),这表明除了胆碱能神经元激活的机制外,还有其他机制参与 CMMC 的产生/传播。在每种动物的结肠中,经过一段时间的神经刺激后,CMMC 被激活,这表明 CMMC 的推进性收缩可能是由于抑制性神经反应后的刺激后兴奋。阻断氮能神经传递可抑制肌肉条带中的刺激后兴奋,并阻断完整结肠中的 CMMC。我们的数据表明,刺激后兴奋是由于氮能、环鸟苷单磷酸(cGMP)依赖性抑制反应停止后,结肠平滑肌细胞(ICC)中的 Ca2+ 瞬变增加所致。氮能反应后的 Ca2+ 瞬变激活了 ICC 中的钙激活氯离子通道(Ano1)。Ano1 通道拮抗剂抑制完整结肠中结肠肌肉的刺激后去极化和 CMMC。ICC 中的刺激后兴奋反应与 cGMP 抑制的环腺苷酸单磷酸(cAMP)磷酸二酯酶 3a 和 cAMP 依赖性效应有关。这些数据表明了结肠中 CMMC 产生和传播的替代机制。