Suppr超能文献

可扩展转移进化优化:应对大型任务实例

Scalable Transfer Evolutionary Optimization: Coping With Big Task Instances.

作者信息

Shakeri Mojtaba, Miahi Erfan, Gupta Abhishek, Ong Yew-Soon

出版信息

IEEE Trans Cybern. 2023 Oct;53(10):6160-6172. doi: 10.1109/TCYB.2022.3164399. Epub 2023 Sep 15.

Abstract

In today's digital world, we are faced with an explosion of data and models produced and manipulated by numerous large-scale cloud-based applications. Under such settings, existing transfer evolutionary optimization (TrEO) frameworks grapple with simultaneously satisfying two important quality attributes, namely: 1) scalability against a growing number of source tasks and 2) online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to scenarios with big task instances, while curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this article, we take a quantum leap forward in enabling more than two orders of magnitude scale-up in the number of tasks; that is, we efficiently handle scenarios beyond 1000 source task instances. We devise a novel TrEO framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source task instances, of which only a small fraction indicate source-target relatedness. The experimental results show that not only does our proposed framework scale efficiently with a growing number of source tasks but is also effective in capturing relevant knowledge against sparsity of related sources, fulfilling the two salient features of scalability and online learning agility.

摘要

在当今的数字世界中,我们面临着由众多基于云的大规模应用程序生成和处理的数据及模型的爆炸式增长。在这种情况下,现有的迁移进化优化(TrEO)框架难以同时满足两个重要的质量属性,即:1)针对不断增加的源任务数量的可扩展性;2)针对与目标任务相关的源的稀疏性的在线学习敏捷性。满足这些属性将有助于将迁移优化实际部署到具有大任务实例的场景中,同时抑制负迁移的威胁。虽然现有算法的应用仅限于几十个源任务,但在本文中,我们实现了任务数量超过两个数量级的大幅提升;也就是说,我们能够有效地处理超过1000个源任务实例的场景。我们设计了一种新颖的TrEO框架,该框架由两个共同进化的种群组成,用于在源知识空间和目标问题解决方案的搜索空间中进行联合进化。特别是,共同进化能够实时编排所学知识,加快目标优化任务的收敛速度。我们针对一系列具有实际意义的离散和连续优化示例进行了广泛的实验,这些示例包含大量源任务实例,其中只有一小部分表明源与目标的相关性。实验结果表明,我们提出的框架不仅能够随着源任务数量的增加而高效扩展,而且在针对相关源的稀疏性捕获相关知识方面也很有效,实现了可扩展性和在线学习敏捷性这两个显著特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验