Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.
Faculté de Médecine, Université Paris Cité, Paris, France.
PLoS One. 2022 Apr 21;17(4):e0263808. doi: 10.1371/journal.pone.0263808. eCollection 2022.
The coronavirus disease pandemic (COVID-19) increased the risk of shortage in intensive care devices, including fittings with intentional leaks. 3D-printing has been used worldwide to produce missing devices. Here we provide key elements towards better quality control of 3D-printed ventilation fittings in a context of sanitary crisis.
Five 3D-printed designs were assessed for non-intentional (junctional and parietal) and intentional leaks: 4 fittings 3D-printed in-house using FDeposition Modelling (FDM), 1 FDM 3D-printed fitting provided by an independent maker, and 2 fittings 3D-printed in-house using Polyjet technology. Five industrial models were included as controls. Two values of wall thickness and the use of coating were tested for in-house FDM-printed devices.
Industrial and Polyjet-printed fittings had no parietal and junctional leaks, and satisfactory intentional leaks. In-house FDM-printed fittings had constant parietal leaks without coating, but this post-treatment method was efficient in controlling parietal sealing, even in devices with thinner walls (0.7 mm vs 2.3 mm). Nevertheless, the use of coating systematically induced absent or insufficient intentional leaks. Junctional leaks were constant with FDM-printed fittings but could be controlled using rubber junctions rather than usual rigid junctions. The properties of Polyjet-printed and FDM-printed fittings were stable over a period of 18 months.
3D-printing is a valid technology to produce ventilation devices but requires care in the choice of printing methods, raw materials, and post-treatment procedures. Even in a context of sanitary crisis, devices produced outside hospitals should be used only after professional quality control, with precise data available on printing protocols. The mechanical properties of ventilation devices are crucial for efficient ventilation, avoiding rebreathing of CO2, and preventing the dispersion of viral particles that can contaminate health professionals. Specific norms are still required to formalise quality control procedures for ventilation fittings, with the rise of 3D-printing initiatives and the perspective of new pandemics.
冠状病毒病大流行(COVID-19)增加了重症监护设备短缺的风险,包括带有故意泄漏的设备。全球范围内已使用 3D 打印来生产缺失的设备。在这里,我们提供了在卫生危机背景下更好地控制 3D 打印通气配件质量的关键要素。
评估了五个 3D 打印设计的非故意(连接和壁)和故意泄漏:4 个使用 FDM (熔融沉积建模)内部 3D 打印的配件,1 个由独立制造商提供的 FDM 3D 打印配件,以及 2 个使用 Polyjet 技术内部 3D 打印的配件。包含五个工业模型作为对照。为内部 FDM 打印设备测试了两种壁厚值和涂层的使用。
工业和 Polyjet 打印的配件没有壁和连接泄漏,并且具有满意的故意泄漏。内部 FDM 打印的配件没有涂层时会持续发生壁泄漏,但这种后处理方法在控制壁密封方面非常有效,即使在壁厚较薄的设备中(0.7 毫米与 2.3 毫米)也是如此。然而,涂层的使用系统地导致故意泄漏缺失或不足。连接泄漏在 FDM 打印的配件中是恒定的,但可以使用橡胶接头而不是通常的刚性接头来控制。在 18 个月的时间内,Polyjet 打印和 FDM 打印配件的性能稳定。
3D 打印是生产通气设备的有效技术,但需要在打印方法、原材料和后处理程序的选择上加以注意。即使在卫生危机背景下,也只能在获得有关打印协议的准确数据并对设备进行专业质量控制后,才能使用医院外生产的设备。通气设备的机械性能对于有效通气、避免重新吸入 CO2 以及防止可能污染卫生专业人员的病毒颗粒的扩散至关重要。还需要特定规范来正式确定通气配件的质量控制程序,这是 3D 打印计划的兴起以及新大流行的出现所必需的。