Suppr超能文献

基于信息对挖掘的对抗域自适应自适应度量学习。

Informative pairs mining based adaptive metric learning for adversarial domain adaptation.

机构信息

National University of Defense Technology, Changsha, Hunan, China.

Baidu Research, Sunnyvale, CA, USA.

出版信息

Neural Netw. 2022 Jul;151:238-249. doi: 10.1016/j.neunet.2022.03.031. Epub 2022 Mar 31.

Abstract

Adversarial domain adaptation has made remarkable in promoting feature transferability, while recent work reveals that there exists an unexpected degradation of feature discrimination during the procedure of learning transferable features. This paper proposes an informative pairs mining based adaptive metric learning (IPM-AML), where a novel two-triplet-sampling strategy is advanced to select informative positive pairs from the same classes and informative negative pairs from different classes, and a metric loss imposed with special weights is further utilized to adaptively pay more attention to those more informative pairs which can adaptively improve discrimination. Then, we incorporate IPM-AML into popular conditional domain adversarial network (CDAN) to learn feature representation that is transferable and discriminative desirably (IPM-AML-CDAN). To ensure the reliability of pseudo target labels in the whole training process, we select more confident target ones whose predicted scores are higher than a given threshold T, and also provide theoretical validation for this simple threshold strategy. Extensive experiment results on four cross-domain benchmarks validate that IPM-AML-CDAN can achieve competitive results compared with state-of-the-art approaches.

摘要

对抗域自适应在促进特征可转移性方面取得了显著成效,然而最近的研究表明,在学习可转移特征的过程中,特征的辨别能力会出现意外的下降。本文提出了一种基于信息对挖掘的自适应度量学习(IPM-AML)方法,其中提出了一种新颖的三对采样策略,从相同类别中选择信息丰富的正样本对,从不同类别中选择信息丰富的负样本对,并进一步利用具有特殊权重的度量损失来自适应地关注那些更具信息量的样本对,从而自适应地提高辨别能力。然后,我们将 IPM-AML 融入到流行的条件域对抗网络(CDAN)中,以学习具有可转移性和可辨别性的特征表示(IPM-AML-CDAN)。为了确保整个训练过程中伪目标标签的可靠性,我们选择置信度更高的目标标签,其预测分数高于给定的阈值 T,并且还为这种简单的阈值策略提供了理论验证。在四个跨域基准上的广泛实验结果验证了 IPM-AML-CDAN 可以与最先进的方法相媲美,取得有竞争力的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验