Suppr超能文献

医院信息系统中 COVID-19 的大数据分析。

Big data analysis for Covid-19 in hospital information systems.

机构信息

Hospital of Chengdu University of TCM, Chengdu, Sichuan, China.

出版信息

PLoS One. 2024 May 22;19(5):e0294481. doi: 10.1371/journal.pone.0294481. eCollection 2024.

Abstract

The COVID-19 pandemic has triggered a global public health crisis, affecting hundreds of countries. With the increasing number of infected cases, developing automated COVID-19 identification tools based on CT images can effectively assist clinical diagnosis and reduce the tedious workload of image interpretation. To expand the dataset for machine learning methods, it is necessary to aggregate cases from different medical systems to learn robust and generalizable models. This paper proposes a novel deep learning joint framework that can effectively handle heterogeneous datasets with distribution discrepancies for accurate COVID-19 identification. We address the cross-site domain shift by redesigning the COVID-Net's network architecture and learning strategy, and independent feature normalization in latent space to improve prediction accuracy and learning efficiency. Additionally, we propose using a contrastive training objective to enhance the domain invariance of semantic embeddings and boost classification performance on each dataset. We develop and evaluate our method with two large-scale public COVID-19 diagnosis datasets containing CT images. Extensive experiments show that our method consistently improves the performance both datasets, outperforming the original COVID-Net trained on each dataset by 13.27% and 15.15% in AUC respectively, also exceeding existing state-of-the-art multi-site learning methods.

摘要

新型冠状病毒肺炎疫情引发了全球性公共卫生危机,影响了数百个国家。随着感染病例的不断增加,开发基于 CT 图像的自动化新型冠状病毒肺炎识别工具可以有效辅助临床诊断,减少图像解读的繁琐工作量。为了扩展机器学习方法的数据集,有必要整合来自不同医疗系统的病例,以学习稳健且可泛化的模型。本文提出了一种新颖的深度学习联合框架,可以有效地处理具有分布差异的异构数据集,从而实现准确的新型冠状病毒肺炎识别。我们通过重新设计 COVID-Net 的网络架构和学习策略,以及在潜在空间中进行独立特征归一化,解决了跨站点领域转移问题,从而提高了预测精度和学习效率。此外,我们提出使用对比训练目标来增强语义嵌入的域不变性,并提高在每个数据集上的分类性能。我们使用包含 CT 图像的两个大规模公共新型冠状病毒肺炎诊断数据集来开发和评估我们的方法。广泛的实验表明,我们的方法在两个数据集上的性能都得到了一致的提高,在 AUC 上分别比在每个数据集上训练的原始 COVID-Net 提高了 13.27%和 15.15%,也超过了现有的多站点学习方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1660/11111070/304fe66c1a6c/pone.0294481.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验