Zhou Ruishi, Wang Peng, Li Yueqi, Mou Xiuying, Zhao Zhan, Chen Xianxiang, Du Lidong, Yang Ting, Zhan Qingyuan, Fang Zhen
Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS), Beijing 100190, China.
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
Bioengineering (Basel). 2022 Mar 25;9(4):136. doi: 10.3390/bioengineering9040136.
Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function parameter prediction.
We first established a system to collect volumetric capnography and then processed the data with a combination algorithm to predict pulmonary function parameters. The algorithm consists of three main parts: a medical feature regression structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) algorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN) algorithm.
The root mean square error (RMSE) of the pulmonary function parameters predicted by the combination algorithm was less than 0.39L and the R was found to be greater than 0.85 through a ten-fold cross-validation experiment.
Compared with the existing methods for predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate. At the same time, this algorithm uses specific processing structures for different features, and the interpretability of the algorithm is ensured while mining the feature depth information.
肺功能参数在呼吸系统疾病评估中起着关键作用。然而,现有预测肺功能参数方法的准确性较低。本研究提出一种组合算法以提高肺功能参数预测的准确性。
我们首先建立一个收集容积式二氧化碳描记法数据的系统,然后用组合算法处理数据以预测肺功能参数。该算法由三个主要部分组成:一个由支持向量机(SVM)和极端梯度提升(XGBoost)算法组成的医学特征回归结构、一个由一维卷积神经网络(1D-CNN)组成的序列特征回归结构以及一个使用改进的K近邻(KNN)算法的误差校正结构。
通过十折交叉验证实验,组合算法预测的肺功能参数的均方根误差(RMSE)小于0.39L,且R大于0.85。
与现有预测肺功能参数的方法相比,本算法可实现更高的准确率。同时,该算法针对不同特征采用特定的处理结构,在挖掘特征深度信息的同时确保了算法的可解释性。