Suppr超能文献

用于新冠肺炎的人工智能:快速综述

Artificial Intelligence for COVID-19: Rapid Review.

作者信息

Chen Jiayang, See Kay Choong

机构信息

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, Singapore, Singapore.

出版信息

J Med Internet Res. 2020 Oct 27;22(10):e21476. doi: 10.2196/21476.

Abstract

BACKGROUND

COVID-19 was first discovered in December 2019 and has since evolved into a pandemic.

OBJECTIVE

To address this global health crisis, artificial intelligence (AI) has been deployed at various levels of the health care system. However, AI has both potential benefits and limitations. We therefore conducted a review of AI applications for COVID-19.

METHODS

We performed an extensive search of the PubMed and EMBASE databases for COVID-19-related English-language studies published between December 1, 2019, and March 31, 2020. We supplemented the database search with reference list checks. A thematic analysis and narrative review of AI applications for COVID-19 was conducted.

RESULTS

In total, 11 papers were included for review. AI was applied to COVID-19 in four areas: diagnosis, public health, clinical decision making, and therapeutics. We identified several limitations including insufficient data, omission of multimodal methods of AI-based assessment, delay in realization of benefits, poor internal/external validation, inability to be used by laypersons, inability to be used in resource-poor settings, presence of ethical pitfalls, and presence of legal barriers. AI could potentially be explored in four other areas: surveillance, combination with big data, operation of other core clinical services, and management of patients with COVID-19.

CONCLUSIONS

In view of the continuing increase in the number of cases, and given that multiple waves of infections may occur, there is a need for effective methods to help control the COVID-19 pandemic. Despite its shortcomings, AI holds the potential to greatly augment existing human efforts, which may otherwise be overwhelmed by high patient numbers.

摘要

背景

2019年12月首次发现新型冠状病毒肺炎(COVID-19),此后它演变成了一场大流行病。

目的

为应对这一全球健康危机,人工智能(AI)已在医疗保健系统的各个层面得到应用。然而,人工智能既有潜在的益处,也有局限性。因此,我们对人工智能在COVID-19中的应用进行了综述。

方法

我们对PubMed和EMBASE数据库进行了广泛检索,以查找2019年12月1日至2020年3月31日期间发表的与COVID-19相关的英文研究。我们通过检查参考文献列表对数据库搜索进行了补充。对人工智能在COVID-19中的应用进行了主题分析和叙述性综述。

结果

总共纳入11篇论文进行综述。人工智能在四个领域应用于COVID-19:诊断、公共卫生、临床决策和治疗。我们确定了几个局限性,包括数据不足、遗漏基于人工智能的多模态评估方法、效益实现延迟、内部/外部验证不佳、非专业人员无法使用、无法在资源匮乏地区使用、存在伦理陷阱以及存在法律障碍。人工智能还可能在其他四个领域进行探索:监测、与大数据结合、其他核心临床服务的运营以及COVID-19患者的管理。

结论

鉴于病例数量持续增加,并且可能会出现多波感染,需要有效的方法来帮助控制COVID-19大流行。尽管存在缺点,但人工智能有潜力极大地增强现有的人力,否则可能会被大量患者压垮。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcce/7595751/86a8096da283/jmir_v22i10e21476_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验