Suppr超能文献

用于聚类分析以定义射血分数保留的心力衰竭不同结局亚组的无监督机器学习方法比较

Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes.

作者信息

Nouraei Hirmand, Nouraei Hooman, Rabkin Simon W

机构信息

Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.

出版信息

Bioengineering (Basel). 2022 Apr 16;9(4):175. doi: 10.3390/bioengineering9040175.

Abstract

Heart failure with preserved ejection (HFpEF) is a heterogenous condition affecting nearly half of all patients with heart failure (HF). Artificial intelligence methodologies can be useful to identify patient subclassifications with important clinical implications. We sought a comparison of different machine learning (ML) techniques and clustering capabilities in defining meaningful subsets of patients with HFpEF. Three unsupervised clustering strategies, hierarchical clustering, K-prototype, and partitioning around medoids (PAM), were used to identify distinct clusters in patients with HFpEF, based on a wide range of demographic, laboratory, and clinical parameters. The study population had a median age of 77 years, with a female majority, and moderate diastolic dysfunction. Hierarchical clustering produced six groups but two were too small (two and seven cases) to be clinically meaningful. The K-prototype methods produced clusters in which several clinical and biochemical features did not show statistically significant differences and there was significant overlap between the clusters. The PAM methodology provided the best group separations and identified six mutually exclusive groups (HFpEF1-6) with statistically significant differences in patient characteristics and outcomes. Comparison of three different unsupervised ML clustering strategies, hierarchical clustering, K-prototype, and partitioning around medoids (PAM), was performed on a mixed dataset of patients with HFpEF containing clinical and numerical data. The PAM method identified six distinct subsets of patients with HFpEF with different long-term outcomes or mortality. By comparison, the two other clustering algorithms, the hierarchical clustering and K-prototype, were less optimal.

摘要

射血分数保留的心力衰竭(HFpEF)是一种异质性疾病,影响着近一半的心力衰竭(HF)患者。人工智能方法有助于识别具有重要临床意义的患者亚分类。我们旨在比较不同的机器学习(ML)技术和聚类能力,以定义有意义的HFpEF患者子集。基于广泛的人口统计学、实验室和临床参数,使用三种无监督聚类策略,即层次聚类、K-原型聚类和围绕中心点的划分(PAM),来识别HFpEF患者中的不同聚类。研究人群的中位年龄为77岁,女性居多,舒张功能中度受损。层次聚类产生了六个组,但其中两组太小(分别为2例和7例),无临床意义。K-原型方法产生的聚类中,几个临床和生化特征没有显示出统计学上的显著差异,并且聚类之间存在显著重叠。PAM方法提供了最佳的组间分离,并识别出六个相互排斥的组(HFpEF1-6),这些组在患者特征和结局方面存在统计学上的显著差异。在包含临床和数值数据的HFpEF患者混合数据集上,对三种不同的无监督ML聚类策略,即层次聚类、K-原型聚类和围绕中心点的划分(PAM)进行了比较。PAM方法识别出了六个不同的HFpEF患者子集,其长期结局或死亡率不同。相比之下,另外两种聚类算法,即层次聚类和K-原型聚类,则不太理想。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3829/9033031/2abc7ac76a29/bioengineering-09-00175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验