Barnawi Ahmed, Boulares Mehrez, Somai Rim
Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Research Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), Higher National School of Engineers of Tunis (ENSIT), University of Tunis, Tunis 1008, Tunisia.
Bioengineering (Basel). 2023 Feb 26;10(3):294. doi: 10.3390/bioengineering10030294.
The World Health Organization (WHO) highlights that cardiovascular diseases (CVDs) are one of the leading causes of death globally, with an estimated rise to over 23.6 million deaths by 2030. This alarming trend can be attributed to our unhealthy lifestyles and lack of attention towards early CVD diagnosis. Traditional cardiac auscultation, where a highly qualified cardiologist listens to the heart sounds, is a crucial diagnostic method, but not always feasible or affordable. Therefore, developing accessible and user-friendly CVD recognition solutions can encourage individuals to integrate regular heart screenings into their routine. Although many automatic CVD screening methods have been proposed, most of them rely on complex prepocessing steps and heart cycle segmentation processes. In this work, we introduce a simple and efficient approach for recognizing normal and abnormal PCG signals using Physionet data. We employ data selection techniques such as kernel density estimation (KDE) for signal duration extraction, signal-to-noise Ratio (SNR), and GMM clustering to improve the performance of 17 pretrained Keras CNN models. Our results indicate that using KDE to select the appropriate signal duration and fine-tuning the VGG19 model results in excellent classification performance with an overall accuracy of 0.97, sensitivity of 0.946, precision of 0.944, and specificity of 0.946.
世界卫生组织(WHO)强调,心血管疾病(CVDs)是全球主要死因之一,预计到2030年死亡人数将增至2360多万。这一惊人趋势可归因于我们不健康的生活方式以及对心血管疾病早期诊断缺乏关注。传统的心脏听诊是一种关键的诊断方法,由高素质的心脏病专家听取心音,但并不总是可行或负担得起。因此,开发易于获取且用户友好的心血管疾病识别解决方案可以鼓励个人将定期心脏筛查纳入日常。尽管已经提出了许多自动心血管疾病筛查方法,但大多数方法都依赖于复杂的预处理步骤和心动周期分割过程。在这项工作中,我们介绍了一种使用Physionet数据识别正常和异常心音图(PCG)信号的简单有效方法。我们采用数据选择技术,如核密度估计(KDE)来提取信号持续时间、信噪比(SNR)和高斯混合模型(GMM)聚类,以提高17个预训练的Keras卷积神经网络(CNN)模型的性能。我们的结果表明,使用KDE选择合适的信号持续时间并对VGG19模型进行微调,可获得出色的分类性能,总体准确率为0.97,灵敏度为0.946,精确率为0.944,特异性为0.946。