Suppr超能文献

心血管疾病数据驱动预后系统的超参数优化

Hyperparameter optimization for cardiovascular disease data-driven prognostic system.

作者信息

Saputra Jayson, Lawrencya Cindy, Saini Jecky Mitra, Suharjito Suharjito

机构信息

Industrial Engineering Department, BINUS Graduate Program - Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia.

出版信息

Vis Comput Ind Biomed Art. 2023 Aug 1;6(1):16. doi: 10.1186/s42492-023-00143-6.

Abstract

Prediction and diagnosis of cardiovascular diseases (CVDs) based, among other things, on medical examinations and patient symptoms are the biggest challenges in medicine. About 17.9 million people die from CVDs annually, accounting for 31% of all deaths worldwide. With a timely prognosis and thorough consideration of the patient's medical history and lifestyle, it is possible to predict CVDs and take preventive measures to eliminate or control this life-threatening disease. In this study, we used various patient datasets from a major hospital in the United States as prognostic factors for CVD. The data was obtained by monitoring a total of 918 patients whose criteria for adults were 28-77 years old. In this study, we present a data mining modeling approach to analyze the performance, classification accuracy and number of clusters on Cardiovascular Disease Prognostic datasets in unsupervised machine learning (ML) using the Orange data mining software. Various techniques are then used to classify the model parameters, such as k-nearest neighbors, support vector machine, random forest, artificial neural network (ANN), naïve bayes, logistic regression, stochastic gradient descent (SGD), and AdaBoost. To determine the number of clusters, various unsupervised ML clustering methods were used, such as k-means, hierarchical, and density-based spatial clustering of applications with noise clustering. The results showed that the best model performance analysis and classification accuracy were SGD and ANN, both of which had a high score of 0.900 on Cardiovascular Disease Prognostic datasets. Based on the results of most clustering methods, such as k-means and hierarchical clustering, Cardiovascular Disease Prognostic datasets can be divided into two clusters. The prognostic accuracy of CVD depends on the accuracy of the proposed model in determining the diagnostic model. The more accurate the model, the better it can predict which patients are at risk for CVD.

摘要

基于医学检查和患者症状等因素对心血管疾病(CVD)进行预测和诊断是医学领域面临的最大挑战。每年约有1790万人死于心血管疾病,占全球总死亡人数的31%。通过及时的预后评估以及对患者病史和生活方式的全面考量,有可能预测心血管疾病并采取预防措施来消除或控制这种危及生命的疾病。在本研究中,我们使用了美国一家大型医院的各种患者数据集作为心血管疾病的预后因素。这些数据是通过监测总共918名符合成年人标准(年龄在28 - 77岁之间)的患者获得的。在本研究中,我们提出了一种数据挖掘建模方法,使用Orange数据挖掘软件在无监督机器学习(ML)中分析心血管疾病预后数据集的性能、分类准确率和聚类数量。然后使用各种技术对模型参数进行分类,如k近邻、支持向量机、随机森林、人工神经网络(ANN)、朴素贝叶斯、逻辑回归、随机梯度下降(SGD)和AdaBoost。为了确定聚类数量,使用了各种无监督ML聚类方法,如k均值、层次聚类和基于密度的带有噪声应用的空间聚类。结果表明,最佳的模型性能分析和分类准确率是SGD和ANN,两者在心血管疾病预后数据集上的得分均高达0.900。基于大多数聚类方法(如k均值和层次聚类)的结果,心血管疾病预后数据集可分为两个聚类。心血管疾病的预后准确性取决于所提出模型在确定诊断模型方面的准确性。模型越准确,就越能更好地预测哪些患者有患心血管疾病的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff2a/10390457/c4d531aabb9b/42492_2023_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验