Suppr超能文献

用于医学应用的可解释多媒体特征融合

Explainable Multimedia Feature Fusion for Medical Applications.

作者信息

Wagenpfeil Stefan, Mc Kevitt Paul, Cheddad Abbas, Hemmje Matthias

机构信息

Faculty of Mathematics and Computer Science, University of Hagen, Universitätsstrasse 1, 58097 Hagen, Germany.

Academy for International Science & Research (AISR), Derry BT48 7JL, UK.

出版信息

J Imaging. 2022 Apr 8;8(4):104. doi: 10.3390/jimaging8040104.

Abstract

Due to the exponential growth of medical information in the form of, e.g., text, images, Electrocardiograms (ECGs), X-rays, and multimedia, the management of a patient's data has become a huge challenge. In particular, the extraction of features from various different formats and their representation in a homogeneous way are areas of interest in medical applications. Multimedia Information Retrieval (MMIR) frameworks, like the Generic Multimedia Analysis Framework (GMAF), can contribute to solving this problem, when adapted to special requirements and modalities of medical applications. In this paper, we demonstrate how typical multimedia processing techniques can be extended and adapted to medical applications and how these applications benefit from employing a Multimedia Feature Graph (MMFG) and specialized, efficient indexing structures in the form of Graph Codes. These Graph Codes are transformed to feature relevant Graph Codes by employing a modified Term Frequency Inverse Document Frequency (TFIDF) algorithm, which further supports value ranges and Boolean operations required in the medical context. On this basis, various metrics for the calculation of similarity, recommendations, and automated inferencing and reasoning can be applied supporting the field of diagnostics. Finally, the presentation of these new facilities in the form of explainability is introduced and demonstrated. Thus, in this paper, we show how Graph Codes contribute new querying options for diagnosis and how Explainable Graph Codes can help to readily understand medical multimedia formats.

摘要

由于医学信息以文本、图像、心电图(ECG)、X射线和多媒体等形式呈指数级增长,患者数据的管理已成为一项巨大挑战。特别是,从各种不同格式中提取特征并以统一方式进行表示,是医学应用中备受关注的领域。多媒体信息检索(MMIR)框架,如通用多媒体分析框架(GMAF),在适应医学应用的特殊要求和模态时,有助于解决这一问题。在本文中,我们展示了典型的多媒体处理技术如何扩展并适用于医学应用,以及这些应用如何受益于采用多媒体特征图(MMFG)和以图码形式存在的专门、高效的索引结构。通过采用改进的词频逆文档频率(TFIDF)算法,这些图码被转换为与特征相关的图码,该算法进一步支持医学背景下所需的值范围和布尔运算。在此基础上,可以应用各种用于计算相似度、推荐以及自动推理的指标,以支持诊断领域。最后,介绍并展示了以可解释性形式呈现的这些新工具。因此,在本文中,我们展示了图码如何为诊断提供新的查询选项,以及可解释图码如何有助于轻松理解医学多媒体格式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/563c/9032787/27e7b7350e37/jimaging-08-00104-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验