Suppr超能文献

在乳腺癌风险预测中增强乳腺X线密度测量

Enhancement of mammographic density measures in breast cancer risk prediction.

作者信息

Cheddad Abbas, Czene Kamila, Shepherd John A, Li Jingmei, Hall Per, Humphreys Keith

机构信息

Authors' Affiliations: Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;

Department of Radiology and Biomedical Imaging, UCSF School of Medicine, University of California, San Francisco, California; and.

出版信息

Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1314-23. doi: 10.1158/1055-9965.EPI-13-1240. Epub 2014 Apr 10.

Abstract

BACKGROUND

Mammographic density is a strong risk factor for breast cancer.

METHODS

We present a novel approach to enhance area density measures that takes advantage of the relative density of the pectoral muscle that appears in lateral mammographic views. We hypothesized that the grey scale of film mammograms is normalized to volume breast density but not pectoral density and thus pectoral density becomes an independent marker of volumetric density.

RESULTS

From analysis of data from a Swedish case-control study (1,286 breast cancer cases and 1,391 control subjects, ages 50-75 years), we found that the mean intensity of the pectoral muscle (MIP) was highly associated with breast cancer risk [per SD: OR = 0.82; 95% confidence interval (CI), 0.75-0.88; P = 6 × 10(-7)] after adjusting for a validated computer-assisted measure of percent density (PD), Cumulus. The area under curve (AUC) changed from 0.600 to 0.618 due to using PD with the pectoral muscle as reference instead of a standard area-based PD measure. We showed that MIP is associated with a genetic variant known to be associated with mammographic density and breast cancer risk, rs10995190, in a subset of women with genetic data. We further replicated the association between MIP and rs10995190 in an additional cohort of 2,655 breast cancer cases (combined P = 0.0002).

CONCLUSIONS

MIP is a marker of volumetric density that can be used to complement area PD in mammographic density studies and breast cancer risk assessment.

IMPACT

Inclusion of MIP in risk models should be considered for studies using area PD from analog films.

摘要

背景

乳腺X线密度是乳腺癌的一个重要风险因素。

方法

我们提出了一种新的方法来增强面积密度测量,该方法利用了乳腺外侧位X线片中出现的胸肌相对密度。我们假设乳腺胶片的灰度被归一化为乳房体积密度,而不是胸肌密度,因此胸肌密度成为体积密度的一个独立标记。

结果

通过对瑞典一项病例对照研究(1286例乳腺癌病例和1391例对照对象,年龄50 - 75岁)的数据进行分析,我们发现,在调整了经过验证的计算机辅助密度百分比(PD)测量值Cumulus后,胸肌的平均强度(MIP)与乳腺癌风险高度相关[每标准差:比值比(OR)= 0.82;95%置信区间(CI),0.75 - 0.88;P = 6×10⁻⁷]。由于使用以胸肌为参考的PD而非基于标准面积的PD测量值,曲线下面积(AUC)从0.600变为0.618。我们表明,在有基因数据的一部分女性中,MIP与一个已知与乳腺X线密度和乳腺癌风险相关的基因变体rs10995190相关。我们在另外一组2655例乳腺癌病例中进一步重复了MIP与rs10995190之间的关联(合并P = 0.0002)。

结论

MIP是体积密度的一个标记,可用于在乳腺X线密度研究和乳腺癌风险评估中补充面积PD。

影响

对于使用模拟胶片的面积PD的研究,应考虑将MIP纳入风险模型。

相似文献

1
Enhancement of mammographic density measures in breast cancer risk prediction.
Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1314-23. doi: 10.1158/1055-9965.EPI-13-1240. Epub 2014 Apr 10.
2
Pectoral muscle attenuation as a marker for breast cancer risk in full-field digital mammography.
Cancer Epidemiol Biomarkers Prev. 2015 Jun;24(6):985-91. doi: 10.1158/1055-9965.EPI-14-1362. Epub 2015 Apr 13.
3
Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.
PLoS One. 2014 Oct 20;9(10):e110690. doi: 10.1371/journal.pone.0110690. eCollection 2014.
5
Comparison of percent density from raw and processed full-field digital mammography data.
Breast Cancer Res. 2013 Jan 4;15(1):R1. doi: 10.1186/bcr3372.
6
Mammographic texture resemblance generalizes as an independent risk factor for breast cancer.
Breast Cancer Res. 2014 Apr 8;16(2):R37. doi: 10.1186/bcr3641.
9
Automated measurement of volumetric mammographic density: a tool for widespread breast cancer risk assessment.
Cancer Epidemiol Biomarkers Prev. 2014 Sep;23(9):1764-72. doi: 10.1158/1055-9965.EPI-13-1219. Epub 2014 Jul 10.
10
Digital versus screen-film mammography: impact of mammographic density and hormone therapy on breast cancer detection.
Breast Cancer Res Treat. 2015 Nov;154(2):377-87. doi: 10.1007/s10549-015-3622-x. Epub 2015 Oct 30.

引用本文的文献

1
Explainable Multimedia Feature Fusion for Medical Applications.
J Imaging. 2022 Apr 8;8(4):104. doi: 10.3390/jimaging8040104.
2
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review.
Cancers (Basel). 2021 Feb 1;13(3):552. doi: 10.3390/cancers13030552.
4
E-Science technologies in a workflow for personalized medicine using cancer screening as a case study.
J Am Med Inform Assoc. 2017 Sep 1;24(5):950-957. doi: 10.1093/jamia/ocx038.
6
Risk determination and prevention of breast cancer.
Breast Cancer Res. 2014 Sep 28;16(5):446. doi: 10.1186/s13058-014-0446-2.
7
Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.
PLoS One. 2014 Oct 20;9(10):e110690. doi: 10.1371/journal.pone.0110690. eCollection 2014.

本文引用的文献

1
Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer.
Annu Rev Biomed Eng. 2013;15:327-57. doi: 10.1146/annurev-bioeng-071812-152416. Epub 2013 May 13.
2
Large-scale genotyping identifies 41 new loci associated with breast cancer risk.
Nat Genet. 2013 Apr;45(4):353-61, 361e1-2. doi: 10.1038/ng.2563.
4
High-throughput mammographic-density measurement: a tool for risk prediction of breast cancer.
Breast Cancer Res. 2012 Jul 30;14(4):R114. doi: 10.1186/bcr3238.
5
The influence of mammographic density on breast tumor characteristics.
Breast Cancer Res Treat. 2012 Jul;134(2):859-66. doi: 10.1007/s10549-012-2127-0. Epub 2012 Jun 19.
6
Characterizing mammographic images by using generic texture features.
Breast Cancer Res. 2012 Apr 10;14(2):R59. doi: 10.1186/bcr3163.
8
pROC: an open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011 Mar 17;12:77. doi: 10.1186/1471-2105-12-77.
9
10
Common variants in ZNF365 are associated with both mammographic density and breast cancer risk.
Nat Genet. 2011 Mar;43(3):185-7. doi: 10.1038/ng.760. Epub 2011 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验