Suppr超能文献

用于乳腺癌风险评估的处理后全场数字化乳腺X线摄影中的面积和体积密度估计。

Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.

作者信息

Cheddad Abbas, Czene Kamila, Eriksson Mikael, Li Jingmei, Easton Douglas, Hall Per, Humphreys Keith

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Human Genetics, Genome Institute of Singapore, Singapore, Singapore.

出版信息

PLoS One. 2014 Oct 20;9(10):e110690. doi: 10.1371/journal.pone.0110690. eCollection 2014.

Abstract

INTRODUCTION

Mammographic density, the white radiolucent part of a mammogram, is a marker of breast cancer risk and mammographic sensitivity. There are several means of measuring mammographic density, among which are area-based and volumetric-based approaches. Current volumetric methods use only unprocessed, raw mammograms, which is a problematic restriction since such raw mammograms are normally not stored. We describe fully automated methods for measuring both area and volumetric mammographic density from processed images.

METHODS

The data set used in this study comprises raw and processed images of the same view from 1462 women. We developed two algorithms for processed images, an automated area-based approach (CASAM-Area) and a volumetric-based approach (CASAM-Vol). The latter method was based on training a random forest prediction model with image statistical features as predictors, against a volumetric measure, Volpara, for corresponding raw images. We contrast the three methods, CASAM-Area, CASAM-Vol and Volpara directly and in terms of association with breast cancer risk and a known genetic variant for mammographic density and breast cancer, rs10995190 in the gene ZNF365. Associations with breast cancer risk were evaluated using images from 47 breast cancer cases and 1011 control subjects. The genetic association analysis was based on 1011 control subjects.

RESULTS

All three measures of mammographic density were associated with breast cancer risk and rs10995190 (p<0.025 for breast cancer risk and p<1 × 10(-6) for rs10995190). After adjusting for one of the measures there remained little or no evidence of residual association with the remaining density measures (p>0.10 for risk, p>0.03 for rs10995190).

CONCLUSIONS

Our results show that it is possible to obtain reliable automated measures of volumetric and area mammographic density from processed digital images. Area and volumetric measures of density on processed digital images performed similar in terms of risk and genetic association.

摘要

引言

乳腺X线密度是乳房X光片中白色的射线可透过部分,是乳腺癌风险和乳腺X线敏感性的一个指标。有几种测量乳腺X线密度的方法,其中包括基于面积和基于体积的方法。当前的体积测量方法仅使用未处理的原始乳房X光片,这是一个有问题的限制,因为此类原始乳房X光片通常不会被存储。我们描述了从处理后的图像中测量面积和体积乳腺X线密度的全自动方法。

方法

本研究中使用的数据集包括1462名女性同一视角的原始图像和处理后的图像。我们为处理后的图像开发了两种算法,一种基于面积的自动方法(CASAM-Area)和一种基于体积的方法(CASAM-Vol)。后一种方法基于使用图像统计特征作为预测因子训练随机森林预测模型,以对应原始图像的体积测量值Volpara作为对照。我们直接以及就与乳腺癌风险和一个已知的乳腺X线密度及乳腺癌基因变异(ZNF365基因中的rs10995190)的关联方面,对CASAM-Area、CASAM-Vol和Volpara这三种方法进行了对比。使用来自47例乳腺癌病例和1011名对照受试者的图像评估与乳腺癌风险的关联。基因关联分析基于1011名对照受试者。

结果

所有三种乳腺X线密度测量值均与乳腺癌风险和rs10995190相关(乳腺癌风险p<0.025,rs10995190 p<1×10⁻⁶)。在对其中一种测量值进行调整后,几乎没有或没有证据表明与其余密度测量值存在残余关联(风险p>0.10,rs10995190 p>0.03)。

结论

我们的结果表明,从处理后的数字图像中获得可靠的体积和面积乳腺X线密度自动测量值是可能的。处理后的数字图像上的面积和体积密度测量值在风险和基因关联方面表现相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c8/4203856/3aa34d640218/pone.0110690.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验