IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):1962-77. doi: 10.1109/TPAMI.2011.48. Epub 2011 Mar 10.
We introduce the use of describable visual attributes for face verification and image search. Describable visual attributes are labels that can be given to an image to describe its appearance. This paper focuses on images of faces and the attributes used to describe them, although the concepts also apply to other domains. Examples of face attributes include gender, age, jaw shape, nose size, etc. The advantages of an attribute-based representation for vision tasks are manifold: They can be composed to create descriptions at various levels of specificity; they are generalizable, as they can be learned once and then applied to recognize new objects or categories without any further training; and they are efficient, possibly requiring exponentially fewer attributes (and training data) than explicitly naming each category. We show how one can create and label large data sets of real-world images to train classifiers which measure the presence, absence, or degree to which an attribute is expressed in images. These classifiers can then automatically label new images. We demonstrate the current effectiveness--and explore the future potential--of using attributes for face verification and image search via human and computational experiments. Finally, we introduce two new face data sets, named FaceTracer and PubFig, with labeled attributes and identities, respectively.
我们介绍了可描述视觉属性在人脸识别和图像搜索中的应用。可描述视觉属性是指可以赋予图像的标签,用于描述其外观。本文主要关注人脸图像及其所使用的属性,尽管这些概念也适用于其他领域。人脸属性的示例包括性别、年龄、下巴形状、鼻子大小等。基于属性的表示方法在视觉任务中有多种优势:它们可以组合起来创建不同特定程度的描述;它们具有通用性,因为可以一次性学习,然后无需进一步训练即可应用于识别新的对象或类别;并且它们是高效的,可能只需要指数级更少的属性(和训练数据)来明确命名每个类别。我们展示了如何创建和标记真实世界图像的大型数据集,以训练分类器来衡量属性在图像中的存在、缺失或表达程度。这些分类器可以自动标记新图像。我们通过人类和计算实验展示了使用属性进行人脸识别和图像搜索的当前效果,并探讨了未来的潜力。最后,我们引入了两个新的人脸数据集,分别命名为 FaceTracer 和 PubFig,它们分别具有标记的属性和身份。