Suppr超能文献

用于重建整形外科手术(半)自动规划的多阶段平台

Multi-Stage Platform for (Semi-)Automatic Planning in Reconstructive Orthopedic Surgery.

作者信息

Kordon Florian, Maier Andreas, Swartman Benedict, Privalov Maxim, El Barbari Jan Siad, Kunze Holger

机构信息

Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.

Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nuremberg, 91052 Erlangen, Germany.

出版信息

J Imaging. 2022 Apr 12;8(4):108. doi: 10.3390/jimaging8040108.

Abstract

Intricate lesions of the musculoskeletal system require reconstructive orthopedic surgery to restore the correct biomechanics. Careful pre-operative planning of the surgical steps on 2D image data is an essential tool to increase the precision and safety of these operations. However, the plan’s effectiveness in the intra-operative workflow is challenged by unpredictable patient and device positioning and complex registration protocols. Here, we develop and analyze a multi-stage algorithm that combines deep learning-based anatomical feature detection and geometric post-processing to enable accurate pre- and intra-operative surgery planning on 2D X-ray images. The algorithm allows granular control over each element of the planning geometry, enabling real-time adjustments directly in the operating room (OR). In the method evaluation of three ligament reconstruction tasks effect on the knee joint, we found high spatial precision in drilling point localization (ε<2.9mm) and low angulation errors for k-wire instrumentation (ε<0.75∘) on 38 diagnostic radiographs. Comparable precision was demonstrated in 15 complex intra-operative trauma cases suffering from strong implant overlap and multi-anatomy exposure. Furthermore, we found that the diverse feature detection tasks can be efficiently solved with a multi-task network topology, improving precision over the single-task case. Our platform will help overcome the limitations of current clinical practice and foster surgical plan generation and adjustment directly in the OR, ultimately motivating the development of novel 2D planning guidelines.

摘要

肌肉骨骼系统的复杂损伤需要进行重建整形外科手术以恢复正确的生物力学。在二维图像数据上对手术步骤进行仔细的术前规划是提高这些手术精度和安全性的重要工具。然而,该计划在术中工作流程中的有效性受到患者和设备定位不可预测以及复杂配准协议的挑战。在此,我们开发并分析了一种多阶段算法,该算法结合了基于深度学习的解剖特征检测和几何后处理,以实现基于二维X射线图像的准确术前和术中手术规划。该算法允许对规划几何的每个元素进行精细控制,从而能够在手术室(OR)中直接进行实时调整。在对膝关节三项韧带重建任务的方法评估中,我们在38张诊断X光片上发现钻孔点定位具有较高的空间精度(ε<2.9mm),克氏针器械的角度误差较低(ε<0.75°)。在15例存在强烈植入物重叠和多解剖结构暴露的复杂术中创伤病例中也证明了类似的精度。此外,我们发现多样的特征检测任务可以通过多任务网络拓扑有效地解决,比单任务情况提高了精度。我们的平台将有助于克服当前临床实践的局限性,并促进在手术室中直接生成和调整手术计划,最终推动新型二维规划指南的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ab/9027971/5b8fac9debbc/jimaging-08-00108-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验