Suppr超能文献

微孔和颗粒有机物质周围的微观碳分布随土壤水分状况而变化。

Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime.

机构信息

Department of Soil System Science, Helmholtz-Centre for Environmental Research UFZ, Halle, Germany.

Chair of Soil Science, TUM School of Life Sciences, TU Munich, Freising, Germany.

出版信息

Nat Commun. 2022 Apr 21;13(1):2098. doi: 10.1038/s41467-022-29605-w.

Abstract

Soil carbon sequestration arises from the interplay of carbon input and stabilization, which vary in space and time. Assessing the resulting microscale carbon distribution in an intact pore space, however, has so far eluded methodological accessibility. Here, we explore the role of soil moisture regimes in shaping microscale carbon gradients by a novel mapping protocol for particulate organic matter and carbon in the soil matrix based on a combination of Osmium staining, X-ray computed tomography, and machine learning. With three different soil types we show that the moisture regime governs C losses from particulate organic matter and the microscale carbon redistribution and stabilization patterns in the soil matrix. Carbon depletion around pores (aperture > 10 µm) occurs in a much larger soil volume (19-74%) than carbon enrichment around particulate organic matter (1%). Thus, interacting microscale processes shaped by the moisture regime are a decisive factor for overall soil carbon persistence.

摘要

土壤碳固存源于碳输入和稳定化之间的相互作用,这种相互作用在空间和时间上是不同的。然而,评估完整孔隙空间中由此产生的微观碳分布一直难以实现方法上的可及性。在这里,我们通过一种基于锇染色、X 射线计算机断层扫描和机器学习相结合的新型土壤基质中颗粒有机物质和碳的映射方案,探索了土壤水分条件对微尺度碳梯度形成的作用。通过三种不同的土壤类型,我们表明水分条件控制着颗粒有机物质中的 C 损失以及土壤基质中微尺度碳再分配和稳定化模式。在孔径(>10μm)周围的土壤中发生的碳消耗(19-74%)比颗粒有机物质(1%)周围的碳富集更大。因此,由水分条件塑造的相互作用的微观过程是整体土壤碳持久性的决定性因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1cd/9023478/e931d736e7a3/41467_2022_29605_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验