Awais Muhammad, Naqvi Syed Muhammad Zaigham Abbas, Zhang Hao, Li Linze, Zhang Wei, Awwad Fuad A, Ismail Emad A A, Khan M Ijaz, Raghavan Vijaya, Hu Jiandong
College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
Bioresour Bioprocess. 2023 Dec 7;10(1):90. doi: 10.1186/s40643-023-00710-y.
Sustainable agricultural practices help to manage and use natural resources efficiently. Due to global climate and geospatial land design, soil texture, soil-water content (SWC), and other parameters vary greatly; thus, real time, robust, and accurate soil analytical measurements are difficult to be developed. Conventional statistical analysis tools take longer to analyze and interpret data, which may have delayed a crucial decision. Therefore, this review paper is presented to develop the researcher's insight toward robust, accurate, and quick soil analysis using artificial intelligence (AI), deep learning (DL), and machine learning (ML) platforms to attain robustness in SWC and soil texture analysis. Machine learning algorithms, such as random forests, support vector machines, and neural networks, can be employed to develop predictive models based on available soil data and auxiliary environmental variables. Geostatistical techniques, including kriging and co-kriging, help interpolate and extrapolate soil property values to unsampled locations, improving the spatial representation of the data set. The false positivity in SWC results and bugs in advanced detection techniques are also evaluated, which may lead to wrong agricultural practices. Moreover, the advantages of AI data processing over general statistical analysis for robust and noise-free results have also been discussed in light of smart irrigation technologies. Conclusively, the conventional statistical tools for SWCs and soil texture analysis are not enough to practice and manage ergonomic land management. The broader geospatial non-numeric data are more suitable for AI processing that may soon help soil scientists develop a global SWC database.
可持续农业实践有助于高效管理和利用自然资源。由于全球气候和地理空间土地设计的原因,土壤质地、土壤含水量(SWC)和其他参数差异很大;因此,很难开发出实时、稳健且准确的土壤分析测量方法。传统的统计分析工具分析和解释数据所需时间较长,这可能会延误关键决策。因此,本文献综述旨在拓展研究人员对于使用人工智能(AI)、深度学习(DL)和机器学习(ML)平台进行稳健、准确且快速的土壤分析的认识,以在土壤含水量和土壤质地分析中实现稳健性。可以采用随机森林、支持向量机和神经网络等机器学习算法,基于可用的土壤数据和辅助环境变量来开发预测模型。包括克里金法和协同克里金法在内的地统计技术有助于将土壤属性值内插和外推到未采样的位置,从而改善数据集的空间表示。还评估了土壤含水量结果中的假阳性以及先进检测技术中的缺陷,这些可能会导致错误的农业实践。此外,还结合智能灌溉技术讨论了AI数据处理相对于一般统计分析在获得稳健且无噪声结果方面的优势。总之,用于土壤含水量和土壤质地分析的传统统计工具不足以用于实践和管理符合人体工程学的土地管理。更广泛的地理空间非数字数据更适合AI处理,这可能很快有助于土壤科学家建立一个全球土壤含水量数据库。