Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 12, 616 00, Brno, Czech Republic.
Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 586 01, Jihlava, Czech Republic.
Sci Rep. 2022 Apr 21;12(1):6589. doi: 10.1038/s41598-022-10656-4.
Accurate automated detection of P waves in ECG allows to provide fast correct diagnosis of various cardiac arrhythmias and select suitable strategy for patients' treatment. However, P waves detection is a still challenging task, especially in long-term ECGs with manifested cardiac pathologies. Software tools used in medical practice usually fail to detect P waves under pathological conditions. Most of recently published approaches have not been tested on such the signals at all. Here we introduce a novel method for accurate and reliable P wave detection, which is success in both normal and pathological cases. Our method uses phasor transform of ECG and innovative decision rules in order to improve P waves detection in pathological signals. The rules are based on a deep knowledge of heart manifestation during various arrhythmias, such as atrial fibrillation, premature ventricular contraction, etc. By involving the rules into the decision process, we are able to find the P wave in the correct location or, alternatively, not to search for it at all. In contrast to another studies, we use three, highly variable annotated ECG databases, which contain both normal and pathological records, to objectively validate our algorithm. The results for physiological records are Se = 98.56% and PP = 99.82% for MIT-BIH Arrhythmia Database (MITDP, with MITDB P-Wave Annotations) and Se = 99.23% and PP = 99.12% for QT database. These results are comparable with other published methods. For pathological signals, the proposed method reaches Se = 96.40% and PP = 91.56% for MITDB and Se = 93.07% and PP = 88.60% for Brno University of Technology ECG Signal Database with Annotations of P wave (BUT PDB). In these signals, the proposed detector greatly outperforms other methods and, thus, represents a huge step towards effective use of fully automated ECG analysis in a real medical practice.
准确的自动检测心电图中的 P 波可以快速准确地诊断各种心律失常,并为患者的治疗选择合适的策略。然而,P 波检测仍然是一项具有挑战性的任务,特别是在表现出心脏病理的长期心电图中。医学实践中使用的软件工具通常无法在病理条件下检测到 P 波。最近发表的大多数方法根本没有在这些信号上进行测试。在这里,我们引入了一种用于准确可靠的 P 波检测的新方法,该方法在正常和病理情况下都取得了成功。我们的方法使用心电图的相量变换和创新的决策规则来改善病理信号中的 P 波检测。这些规则基于对各种心律失常(如心房颤动、室性早搏等)中心脏表现的深入了解。通过将规则纳入决策过程,我们能够在正确的位置找到 P 波,或者根本不搜索它。与其他研究不同,我们使用三个高度可变的注释心电图数据库,其中包含正常和病理记录,客观地验证我们的算法。对于生理记录,MIT-BIH 心律失常数据库(MITDP,带 MITDB P 波注释)的 Se=98.56%和 PP=99.82%,QT 数据库的 Se=99.23%和 PP=99.12%,结果与其他已发表的方法相当。对于病理信号,所提出的方法在 MITDB 中达到 Se=96.40%和 PP=91.56%,在 Brno 大学技术心电图信号数据库中具有 P 波注释(BUT PDB)达到 Se=93.07%和 PP=88.60%。在这些信号中,所提出的检测器大大优于其他方法,因此,朝着在实际医疗实践中有效使用全自动心电图分析迈出了一大步。