Suppr超能文献

基于临床知识校准并带有P波和T波标注的快速T波检测

Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves.

作者信息

Elgendi Mohamed, Eskofier Bjoern, Abbott Derek

机构信息

Electrical and Computer Engineering in Medicine Group, University of British Columbia and BC Children's Hospital, Vancouver, BC V6H 3N1, Canada.

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada.

出版信息

Sensors (Basel). 2015 Jul 21;15(7):17693-714. doi: 10.3390/s150717693.

Abstract

BACKGROUND

There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies.

METHODS

Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry).

RESULTS

The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats).

CONCLUSIONS

We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.

摘要

背景

关于心律失常心电图(ECG)信号中T波的自动检测研究有限。这可能是因为没有带有注释T波的可用心律失常数据集。越来越需要开发数值高效的算法,以适应电池驱动的ECG设备的新趋势。此外,还需要以可靠且高效的方式分析长期记录的信号,从而提高移动设备和即时护理技术的诊断能力。

方法

在此,讨论并提供了著名的麻省理工学院-比哈尔心律失常数据库的T波注释。此外,还介绍了一种简单快速的T波检测方法。一种典型的T波检测方法已简化为一种基本方法,该方法由两个移动平均值和动态阈值组成。使用临床上已知的四种窦房结对房性早搏去极化的反应类型(代偿、重置、插值和折返)对动态阈值进行校准。

结果

进行了T波峰值的测定,并在两个著名的数据库QT和麻省理工学院-比哈尔心律失常数据库上对所提出的算法进行了评估。在验证数据库的第一导联上(总共221,186次搏动),该检测器的灵敏度为97.14%,阳性预测值为99.29%。

结论

我们提出了一种简单但非常可靠的T波检测算法,该算法有可能在电池驱动的移动设备上实现。与复杂方法相比,它可以很容易地在数字滤波器设计中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f235/4541954/1c827455a400/sensors-15-17693f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验