Ding Yong, Ding Bin, Kanda Hiroyuki, Usiobo Onovbaramwen Jennifer, Gallet Thibaut, Yang Zhenhai, Liu Yan, Huang Hao, Sheng Jiang, Liu Cheng, Yang Yi, Queloz Valentin Ianis Emmanuel, Zhang Xianfu, Audinot Jean-Nicolas, Redinger Alex, Dang Wei, Mosconic Edoardo, Luo Wen, De Angelis Filippo, Wang Mingkui, Dörflinger Patrick, Armer Melina, Schmid Valentin, Wang Rui, Brooks Keith G, Wu Jihuai, Dyakonov Vladimir, Yang Guanjun, Dai Songyuan, Dyson Paul J, Nazeeruddin Mohammad Khaja
Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, EPFL VALAIS, Sion, Switzerland.
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, P. R. China.
Nat Nanotechnol. 2022 Jun;17(6):598-605. doi: 10.1038/s41565-022-01108-1. Epub 2022 Apr 21.
Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.
尽管钙钛矿太阳能电池在功率转换效率方面取得了显著进展,但从单个小尺寸器件发展到大面积模块,同时与其他薄膜太阳能电池相比保持其商业竞争力,仍然是一项挑战。主要障碍包括降低电子传输层中的电阻损耗和固有缺陷,以及高质量大面积钙钛矿薄膜的可靠制备。在此,我们报道了一种简便的溶剂热法,用于合成具有暴露(001)晶面的单晶TiO菱面体纳米颗粒。由于它们与钙钛矿吸收体的低晶格失配和高亲和力、高电子迁移率以及较低的缺陷密度,基于单晶TiO纳米颗粒的小尺寸器件实现了24.05%的效率和84.7%的填充因子。这些器件在连续运行1400小时后仍保持约90%的初始性能。我们制备了大面积模块,在近24平方厘米的有源面积上获得了22.72%的认证效率,这代表了在扩大规模时效率损失最低的最高效率模块。