Bergquist Jake A, Zenger Brian, Rupp Lindsay C, Narayan Akil, Tate Jess, MacLeod Rob S
Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA.
Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662837.
Computational models of myocardial ischemia are parameterized using assumptions of tissue properties and physiological values such as conductivity ratios in cardiac tissue and conductivity changes between healthy and ischemic tissues. Understanding the effect of uncertainty in these parameter selections would provide useful insight into the performance and variability of the modeling outputs. Recently developed uncertainty quantification tools allow for the application of polynomial chaos expansion uncertainty quantification to such bioelectric models in order to parsimoniously examine model response to input uncertainty. We applied uncertainty quantification to examine reconstructed extracellular potentials from the cardiac passive bidomain based on variation in the conductivity values for the ischemic tissue. We investigated the model response in both a synthetic dataset with simulated ischemic regions and a dataset with ischemic regions derived from experimental recordings. We found that extracellular longitudinal and intracellular longitudinal conductivities predominately affected simulation output, with the highest standard deviations in regions of extracellular potential elevations. We found that transverse conductivity had almost no effect on model output.
心肌缺血的计算模型是通过对组织特性和生理值的假设进行参数化的,这些假设包括心脏组织中的电导率比值以及健康组织和缺血组织之间的电导率变化。了解这些参数选择中不确定性的影响,将有助于深入了解建模输出的性能和变异性。最近开发的不确定性量化工具允许将多项式混沌展开不确定性量化应用于此类生物电模型,以便简洁地研究模型对输入不确定性的响应。我们应用不确定性量化,基于缺血组织电导率值的变化,来检查从心脏被动双域重建的细胞外电位。我们在具有模拟缺血区域的合成数据集和具有从实验记录中得出的缺血区域的数据集上,研究了模型响应。我们发现,细胞外纵向电导率和细胞内纵向电导率对模拟输出的影响最大,在细胞外电位升高的区域标准差最高。我们发现横向电导率对模型输出几乎没有影响。