Suppr超能文献

研究急性心肌缺血时空电特征的新型实验模型:转化平台。

Novel experimental model for studying the spatiotemporal electrical signature of acute myocardial ischemia: a translational platform.

机构信息

Scientific Computing and Imaging Institute, SLC, UT, United States of America. Nora Eccles Cardiovascular Research and Training Institute, SLC, UT, United States of America. School of Medicine, University of Utah, SLC, UT, United States of America. Department of Biomedical Engineering, University of Utah, SLC, UT, United States of America. Author to whom any correspondence should be addressed.

出版信息

Physiol Meas. 2020 Feb 5;41(1):015002. doi: 10.1088/1361-6579/ab64b9.

Abstract

UNLABELLED

Myocardial ischemia is one of the most common cardiovascular pathologies and can indicate many severe and life threatening diseases. Despite these risks, current electrocardiographic detection techniques for ischemia are mediocre at best, with reported sensitivity and specificity ranging from 50%-70% and 70%-90%, respectively.

OBJECTIVE

To improve this performance, we set out to develop an experimental preparation to induce, detect, and analyze bioelectric sources of myocardial ischemia and determine how these sources reflect changes in body-surface potential measurements.

APPROACH

We designed the experimental preparation with three important characteristics: (1) enable comprehensive and simultaneous high-resolution electrical recordings within the myocardial wall, on the heart surface, and on the torso surface; (2) develop techniques to visualize these recorded electrical signals in time and space; and (3) accurately and controllably simulate ischemic stress within the heart by modulating the supply of blood, the demand for perfusion, or a combination of both.

MAIN RESULTS

To achieve these goals we designed comprehensive system that includes (1) custom electrode arrays (2) signal acquisition and multiplexing units, (3) a surgical technique to place electrical recording and myocardial ischemic control equipment, and (4) an image based modeling pipeline to acquire, process, and visualize the results. With this setup, we are uniquely able to capture simultaneously and continuously the electrical signatures of acute myocardial ischemia within the heart, on the heart surface, and on the body surface.

SIGNIFICANCE

This novel experimental preparation enables investigation of the complex and dynamic nature of acute myocardial ischemia that should lead to new, clinically translatable results.

摘要

未加标签

心肌缺血是最常见的心血管病理之一,可表明许多严重的危及生命的疾病。尽管存在这些风险,但目前用于检测缺血的心电图技术最多只能说是中等水平,其报告的灵敏度和特异性分别在 50%-70%和 70%-90%之间。

目的

为了提高这一性能,我们着手开发一种实验准备,以诱导、检测和分析心肌缺血的生物电源,并确定这些源如何反映体表电位测量的变化。

方法

我们设计了实验准备,具有三个重要特征:(1)能够在心肌壁内、心脏表面和躯干表面进行全面和同时的高分辨率电记录;(2)开发技术以在时间和空间上可视化这些记录的电信号;(3)通过调节血液供应、灌注需求或两者的组合,准确和可控地模拟心脏内的缺血应激。

主要结果

为了实现这些目标,我们设计了一个综合系统,包括(1)定制的电极阵列,(2)信号采集和多路复用单元,(3)一种放置电记录和心肌缺血控制设备的手术技术,以及(4)一个基于图像的建模管道,用于获取、处理和可视化结果。有了这个设置,我们能够独特地同时连续捕获心脏内、心脏表面和体表的急性心肌缺血的电信号特征。

意义

这种新的实验准备使我们能够研究急性心肌缺血的复杂和动态性质,这应该会带来新的、可临床转化的结果。

相似文献

2
Imaging electrocardiographic dispersion of depolarization and repolarization during ischemia: simultaneous body surface and epicardial mapping.
Circulation. 2003 May 6;107(17):2257-63. doi: 10.1161/01.CIR.0000065602.78328.B5. Epub 2003 Apr 21.
3
Spatial organization of acute myocardial ischemia.
J Electrocardiol. 2016 May-Jun;49(3):323-36. doi: 10.1016/j.jelectrocard.2016.02.014. Epub 2016 Feb 20.
4
Temporal Performance of Laplacian Eigenmaps and 3D Conduction Velocity in Detecting Ischemic Stress.
J Electrocardiol. 2018 Nov-Dec;51(6S):S116-S120. doi: 10.1016/j.jelectrocard.2018.08.017. Epub 2018 Aug 13.
6
Image-based modeling of acute myocardial ischemia using experimentally derived ischemic zone source representations.
J Electrocardiol. 2018 Jul-Aug;51(4):725-733. doi: 10.1016/j.jelectrocard.2018.05.005. Epub 2018 May 18.
8
A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using Intramurally Recorded Extracellular Potentials.
Ann Biomed Eng. 2018 Sep;46(9):1325-1336. doi: 10.1007/s10439-018-2048-0. Epub 2018 May 21.

引用本文的文献

1
Uncertainty Quantification of Fiber Orientation and Epicardial Activation.
Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.137. Epub 2023 Dec 26.
2
Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification.
Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.345. Epub 2023 Dec 26.
3
Investigation into the importance of using natural PVCs and pathological models for potential-based ECGI validation.
Front Physiol. 2023 May 18;14:1198002. doi: 10.3389/fphys.2023.1198002. eCollection 2023.
4
High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging.
Adv Sci (Weinh). 2024 Jul;11(27):e2301176. doi: 10.1002/advs.202301176. Epub 2023 May 18.
6
A personalized real-time virtual model of whole heart electrophysiology.
Front Physiol. 2022 Sep 23;13:907190. doi: 10.3389/fphys.2022.907190. eCollection 2022.
7
Body Surface Potential Mapping: Contemporary Applications and Future Perspectives.
Hearts (Basel). 2021 Dec;2(4):514-542. doi: 10.3390/hearts2040040. Epub 2021 Nov 5.
8
Myocardial Ischemia Detection Using Body Surface Potential Mappings and Machine Learning.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662808.
9
The Role of Myocardial Fiber Direction in Epicardial Activation Patterns via Uncertainty Quantification.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662950.
10
Uncertainty Quantification in Simulations of Myocardial Ischemia.
Comput Cardiol (2010). 2021 Sep;48. doi: 10.23919/cinc53138.2021.9662837.

本文引用的文献

1
GRÖMeR: A Pipeline for Geodesic Refinement of Mesh Registration.
Funct Imaging Model Heart. 2019 Jun;11504:37-45. doi: 10.1007/978-3-030-21949-9_5. Epub 2019 May 30.
4
Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications.
Front Physiol. 2018 Sep 20;9:1305. doi: 10.3389/fphys.2018.01305. eCollection 2018.
6
Clinical and regulatory considerations for novel electrophysiology mapping systems: Lessons from FIRM.
Pacing Clin Electrophysiol. 2018 Dec;41(12):1669-1680. doi: 10.1111/pace.13509. Epub 2018 Oct 24.
7
Measuring defibrillator surface potentials: The validation of a predictive defibrillation computer model.
Comput Biol Med. 2018 Nov 1;102:402-410. doi: 10.1016/j.compbiomed.2018.08.025. Epub 2018 Aug 29.
8
Image-based modeling of acute myocardial ischemia using experimentally derived ischemic zone source representations.
J Electrocardiol. 2018 Jul-Aug;51(4):725-733. doi: 10.1016/j.jelectrocard.2018.05.005. Epub 2018 May 18.
10
A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using Intramurally Recorded Extracellular Potentials.
Ann Biomed Eng. 2018 Sep;46(9):1325-1336. doi: 10.1007/s10439-018-2048-0. Epub 2018 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验