Rupp Lindsay C, Liu Zexin, Bergquist Jake A, Rampersad Sumientra, White Dan, Tate Jess D, Brooks Dana H, Narayan Akil, MacLeod Rob S
Scientific Computing and Imaging Institute, University of Utah, SLC, UT, USA.
Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.
Comput Cardiol (2010). 2020 Sep;47. doi: 10.22489/cinc.2020.275. Epub 2021 Feb 10.
Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.
心脏模拟在呈现生理过程方面已经变得越来越精确。然而,模拟往往无法捕捉参数不确定性对预测结果的影响。不确定性量化(UQ)是一组基于模型假设来捕捉模拟输出变异性的技术。尽管存在许多UQ方法,但实际应用可能具有挑战性。我们创建了UncertainSCI,这是一个UQ框架,它使用多项式混沌(PC)展开来对由随机变量参数化的模拟中的正向随机误差进行建模。UncertainSCI使用非侵入性方法来简约地探索参数空间。结果是一个高效、稳定且准确的PC模拟器,可对其进行分析以计算输出统计量。我们创建了一个Python应用程序编程接口(API)来运行UncertainSCI,将指导UQ过程所需的用户输入降至最低。我们已将UncertainSCI应用于:(1)使用边界元法量化计算得到的躯干电位对心脏位置不确定性的敏感性,以及(2)使用有限元法量化计算得到的躯干电位对生物组织电导率不确定性的敏感性。借助UncertainSCI,可以评估模拟对参数不确定性的稳健性,并对模型结果的准确性及其所能提供的临床指导建立现实的预期。