Suppr超能文献

一种用于测量幼儿注意力模式的可扩展现成框架及其在自闭症谱系障碍中的应用。

A Scalable Off-the-Shelf Framework for Measuring Patterns of Attention in Young Children and its Application in Autism Spectrum Disorder.

作者信息

Bovery Matthieu, Dawson Geraldine, Hashemi Jordan, Sapiro Guillermo

机构信息

EEA Department, ENS Paris-Saclay, Cachan, FRANCE. He performed this work while visiting Duke University.

Department of Psychiatry and Behavioral Sciences, Duke Center for Autism and Brain Development, and the Duke Institute for Brain Sciences, Durham, NC.

出版信息

IEEE Trans Affect Comput. 2021 Jul-Sep;12(3):722-731. doi: 10.1109/taffc.2018.2890610. Epub 2019 Jan 1.

Abstract

Autism spectrum disorder (ASD) is associated with deficits in the processing of social information and difficulties in social interaction, and individuals with ASD exhibit atypical attention and gaze. Traditionally, gaze studies have relied upon precise and constrained means of monitoring attention using expensive equipment in laboratories. In this work we develop a low-cost off-the-shelf alternative for measuring attention that can be used in natural settings. The head and iris positions of 104 16-31 months children, an age range appropriate for ASD screening and diagnosis, 22 of them diagnosed with ASD, were recorded using the front facing camera in an iPad while they watched on the device screen a movie displaying dynamic stimuli, social stimuli on the left and nonsocial stimuli on the right. The head and iris position were then automatically analyzed via computer vision algorithms to detect the direction of attention. Children in the ASD group paid less attention to the movie, showed less attention to the social as compared to the nonsocial stimuli, and often fixated their attention to one side of the screen. The proposed method provides a low-cost means of monitoring attention to properly designed stimuli, demonstrating that the integration of stimuli design and automatic response analysis results in the opportunity to use off-the-shelf cameras to assess behavioral biomarkers.

摘要

自闭症谱系障碍(ASD)与社会信息处理缺陷及社交互动困难相关,患有ASD的个体表现出非典型的注意力和注视模式。传统上,注视研究依赖于在实验室中使用昂贵设备来精确且受限地监测注意力。在这项研究中,我们开发了一种低成本的现成替代方法来测量注意力,该方法可用于自然环境。我们使用iPad前置摄像头记录了104名16至31个月大儿童(这个年龄段适合进行ASD筛查和诊断,其中22名被诊断为患有ASD)的头部和虹膜位置,这些儿童在设备屏幕上观看一部播放动态刺激的影片,影片左侧为社交刺激,右侧为非社交刺激。然后通过计算机视觉算法自动分析头部和虹膜位置,以检测注意力方向。与非社交刺激相比,ASD组儿童对影片的关注度较低,对社交刺激的关注度也较低,并且经常将注意力集中在屏幕的一侧。所提出的方法提供了一种低成本手段来监测对精心设计刺激的注意力,表明刺激设计与自动反应分析相结合为利用现成摄像头评估行为生物标志物创造了机会。

相似文献

引用本文的文献

4
Computer vision and behavioral phenotyping: an autism case study.计算机视觉与行为表型分析:一项自闭症案例研究。
Curr Opin Biomed Eng. 2019 Mar;9:14-20. doi: 10.1016/j.cobme.2018.12.002. Epub 2018 Dec 18.
9
Machine Learning Based Autism Spectrum Disorder Detection from Videos.基于机器学习的视频自闭症谱系障碍检测
Healthcom. 2021 Mar;2020. doi: 10.1109/healthcom49281.2021.9398924. Epub 2021 Apr 14.

本文引用的文献

1
Computer Vision Analysis for Quantification of Autism Risk Behaviors.用于量化自闭症风险行为的计算机视觉分析
IEEE Trans Affect Comput. 2021 Jan-Mar;12(1):215-226. doi: 10.1109/taffc.2018.2868196. Epub 2018 Sep 3.
9
IntraFace.人脸内部
IEEE Int Conf Autom Face Gesture Recognit Workshops. 2015 May;1. doi: 10.1109/FG.2015.7163082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验