Suppr超能文献

通过分散控制与灵活身体动力学之间的协同耦合实现自适应蜈蚣行走

Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.

作者信息

Yasui Kotaro, Takano Shunsuke, Kano Takeshi, Ishiguro Akio

机构信息

Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.

Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.

出版信息

Front Robot AI. 2022 Apr 5;9:797566. doi: 10.3389/frobt.2022.797566. eCollection 2022.

Abstract

Multi-legged animals such as myriapods can locomote on unstructured rough terrain using their flexible bodies and legs. This highly adaptive locomotion emerges through the dynamic interactions between an animal's nervous system, its flexible body, and the environment. Previous studies have primarily focused on either adaptive leg control or the passive compliance of the body parts and have shown how each enhanced adaptability to complex terrains in multi-legged locomotion. However, the essential mechanism considering both the adaptive locomotor circuits and bodily flexibility remains unclear. In this study, we focused on centipedes and aimed to understand the well-balanced coupling between the two abovementioned mechanisms for rough terrain walking by building a neuromechanical model based on behavioral findings. In the behavioral experiment, we observed a centipede walking when part of the terrain was temporarily removed and thereafter restored. We found that the ground contact sense of each leg was essential for generating rhythmic leg motions and also for establishing adaptive footfall patterns between adjacent legs. Based on this finding, we proposed decentralized control mechanisms using ground contact sense and implemented them into a physical centipede model with flexible bodies and legs. In the simulations, our model self-organized the typical gait on flat terrain and adaptive walking during gap crossing, which were similar to centipedes. Furthermore, we demonstrated that the locomotor performance deteriorated on rough terrain when adaptive leg control was removed or when the body was rigid, which indicates that both the adaptive leg control and the flexible body are essential for adaptive locomotion. Thus, our model is expected to capture the possible essential mechanisms underlying adaptive centipede walking and pave the way for designing multi-legged robots with high adaptability to irregular terrain.

摘要

像多足纲动物这样的多腿动物可以利用其灵活的身体和腿部在非结构化的粗糙地形上移动。这种高度适应性的运动是通过动物神经系统、其灵活的身体与环境之间的动态相互作用而产生的。先前的研究主要集中在适应性腿部控制或身体部位的被动顺应性上,并展示了它们如何在多腿运动中增强对复杂地形的适应性。然而,考虑到适应性运动回路和身体灵活性的基本机制仍不清楚。在本研究中,我们聚焦于蜈蚣,旨在通过基于行为学发现构建神经力学模型,来理解上述两种机制在粗糙地形行走中的平衡耦合。在行为实验中,我们观察了蜈蚣在部分地形被临时移除然后恢复时的行走情况。我们发现,每条腿的地面接触感觉对于产生有节奏的腿部运动以及在相邻腿部之间建立适应性的脚步模式至关重要。基于这一发现,我们提出了利用地面接触感觉的分散控制机制,并将其应用于具有灵活身体和腿部的物理蜈蚣模型中。在模拟中,我们的模型在平坦地形上自组织出典型步态,并在跨越间隙时进行适应性行走,这与蜈蚣的情况相似。此外,我们证明,当移除适应性腿部控制或身体变得僵硬时,在粗糙地形上的运动性能会下降,这表明适应性腿部控制和灵活的身体对于适应性运动都是必不可少的。因此,我们的模型有望捕捉到适应性蜈蚣行走背后可能的基本机制,并为设计对不规则地形具有高适应性的多腿机器人铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc16/9016197/2e17f44a3dac/frobt-09-797566-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验