Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France.
Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita-ku, Hokkaido 001-0020, Japan.
J R Soc Interface. 2024 May;21(214):20230439. doi: 10.1098/rsif.2023.0439. Epub 2024 May 29.
We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.
我们提出了一种新的牵引力量显微镜(TFM)方法,用于研究 10 厘米长的蜈蚣在软质基底上的运动。利用葛根淀粉凝胶的显著弹性和延展性,我们将其用作可变形的凝胶基底,以抵御蜈蚣尖锐的腿部尖端。通过优化基准标记的大小和密度,并微调成像条件,我们提高了测量精度。我们的 TFM 研究揭示了沿蜈蚣纵轴的牵引力,有效地平衡了 0-10 mN 范围内的惯性力,这是 TFM 研究中首次报告非零惯性力的情况。有趣的是,我们观察到力波从蜈蚣的头部传播到尾部,与它的运动速度相对应。此外,我们发现了腿簇与基底相互作用的特征周期:腿部尖端接触时产生向前的力(摩擦力),腿部静止时向后的力(牵引力),以及腿部尖端脱离以重新定位到前方方向时的向前力。这项工作为 TFM 在行为学、摩擦学和机器人学中的应用开辟了前景。